Электромобиль

Аккумуляторы электромобиля

Технические характеристики электромобиля в значительной степени определяются их батареями.

Литий-ионные аккумуляторы

Это классический и пока что самый распространенный вид накопителей энергии, применяемых в электрокарах. Их достоинства:

  • Высокая плотность накопленной энергии.
  • Высокое напряжение на выходе.
  • Не менее 1000 циклов зарядки за 10 лет.
  • Отсутствие «эффекта памяти», из-за которого приходится батареи других типов периодически принудительно разряжать до нуля.
  • Высокая стоимость.
  • Узкий температурный диапазон работы (от –20 до +50 °C).
  • Большая опасность взрыва при авариях.

Алюминий-ионные батареи

Введение алюминия в конструкцию аккумулятора резко снижает опасность взрыва и удешевляет производство. Новейшие экспериментальные батареи подобного типа, разработанные в Китае, выдерживают до 250 тысяч циклов перезарядки. Но в серийные электрокары их еще не устанавливают.

Литиево-серные аккумуляторы

Подобные батареи дешевле и более емкие, чем литий-ионные. И диапазон рабочих температур у них шире. Но есть и существенный недостаток — всего несколько десятков циклов перезарядки. Однако в 2020 австралийская компания году Brighsun New Energy начала выпуск литий-серных аккумуляторов повышенной емкости, рассчитанных на 1700 перезарядок. Пробег оснащенного ими электромобиля достигнет 2 000 км. Данная технология сулит революцию в конструкции всех устройств интернета вещей, прежде всего екарс. Этот тип аккумуляторов сегодня самый перспективный.

Электрический двигатель

Используя мощность от тягового аккумулятора, двигатель приводит в движение колеса автомобиля. В некоторых транспортных средствах используются мотор-генераторы, которые выполняют функции привода и регенерации.

Классический электродвигатель состоит из токопроводящей обмотки статора и вращающегося ротора, который приводится в движение магнитным полем статора и передаёт крутящий колёсам. Существует два типа электродвигателей: синхронный, в котором магнитное поле вращается одновременно с ротором и асинхронный, в котором магнитное поле вращается быстрее ротора.

Асинхронный мотор изменяет скорость вращения в зависимости от частоты переменного тока простым нажатием на педаль акселератора. Это позволяет получить при желании максимальный крутящий момент для разгона с места.

Современные электрокары в зависимости от мощности батареи и двигателей способны разгоняться с места до 100 км/ч за 5-7 секунд, что сопоставимо с разгоном автомобиля с мотором мощностью 250-350 л.с. Но самый быстрый в мире серийный электрокар Rimac C_Two способен преодолевать «сотню» за 1,85 секунды, быстрее некоторых 12-цилиндровых 6-литровых суперкаров!

Неоспоримым преимуществом электрокаров является также то, что крутящий момент вращения электромотора линейно передаётся напрямую колёсам.  В то время, как двигатель внутреннего сгорания преобразует поступательные движения поршней во вращение коленчатого вала и далее через систему шестерен и фрикционов трансмиссии ведущим колёсам. Для преодоления такой «полосы препятствий» автомобилю требуется больше мощности, а значит – больше топлива и объёма двигателя.

Бортовое зарядное устройство принимает входящую электроэнергию переменного тока, подаваемую через порт зарядки, и преобразует ее в мощность постоянного тока для зарядки тягового аккумулятора. Он также обменивается данными с зарядным оборудованием и отслеживает характеристики аккумулятора, такие как напряжение, ток, температуру и состояние заряда, во время зарядки аккумулятора.

Контроллер силовой электроники: этот блок управляет потоком электроэнергии, подаваемой тяговым аккумулятором, регулируя скорость электрического тягового двигателя и создаваемый им крутящий момент.

Система охлаждения поддерживает надлежащий диапазон рабочих температур двигателя, электродвигателя, силовой электроники и других компонентов. В холодное время года избыточное тепло батареи может отводиться в салон электромобиля. По этой причине в современных электрокарах отсутствует традиционная печка.

Трансмиссия электромобиля

В традиционном понимании в электрокарах отсутствует коробка передач и карданный привод колёс, поскольку электромотор работает эффективно в любом диапазоне скоростей. Поэтому у большинства электромобилей установлена односкоростная коробка, расположенная рядом с инвертором. Это позволяет включать режим заднего хода, меняя всего лишь фазы, а также направлять энергию торможения в заряд батареи.

Значительным преимуществом электродвигателя и одноступенчатой коробки является то, что можно использовать «свободный» дифференциал. И в случае пробуксовки одного из ведущих колёс, мгновенно отбирать мощность в одной из полуосей привода, уменьшая его проскальзывание.

Ходовая часть

Система подвесок в электрокарах традиционна и часто может быть заимствована у обычных автомобилей. Главное отличие подвески электрокаров в том, что эластокинематика вынуждена справляться с большим весом, в то время, как лучшая развесовка по осям позволяет инженерам точнее настраивать управляемость, чтобы справиться с инерционностью тяжёлого кузова.

Тормозная система электромобиля устроена хитрее обычной. Традиционные автомобили могут эффективно замедляться при нажатии на педаль тормоза, а энергия торможения направляется на нагрев тормозных колодок и дисков. В электромобилях электромотор может использоваться в качестве генератора для зарядки батареи. При сбросе педали акселератора электроника распознает замедление вращения магнитного поля относительно ротора и замедляет автомобиль. При этом педаль тормоза может использоваться лишь для полной остановки электрокара. Благодаря этому срок службы тормозных механизмов увеличивается в среднем в три раза.  

Лучшие инструкторы по вождению:

Автоинструктор Михаил
АКПП: Chevrolet Aveo МКПП: Chevrolet LanosОбучает в Красногорске, Строгино ОТЗЫВЫ

Автоинструктор Яков
МКПП: Chevrolet LanosОбучает в ЮАО, Видном ОТЗЫВЫ

Автоинструктор Светлана
АКПП: Hyundai AccentОбучает в САО, СЗАО, Химках ОТЗЫВЫ

Автоинструктор Елена
АКПП: Chevrolet LacettiОбучает в ЮАО, ЮВАО, Видном, Домодедове ОТЗЫВЫ

Автоинструктор Михаил
АКПП: Kia Spectra МКПП: Chevrolet LanosОбучает в СЗАО, Строгино ОТЗЫВЫ

Автоинструктор Марина
АКПП: Kia Cerato МКПП: Chevrolet LanosОбучает в САО, Долгопрудном ОТЗЫВЫ

Автоинструктор Елена
АКПП: Kia Spectra МКПП: Daewoo NexiaОбучает в Красногорске ОТЗЫВЫ

Автоинструктор Наталья
АКПП: Kia Spectra Обучает в ВАО, Балашихе,Реутове ОТЗЫВЫ

Автоинструктор Яна
АКПП: Kia Spectra Обучает в САО, Долгопрудном ОТЗЫВЫ

Автоинструктор Юлия
АКПП: Chevrolet Lacetti МКПП: Chevrolet LanosОбучает в ВАО, ЮВАО, Люберцах, Реутове, Железнодорожном ОТЗЫВЫ

Автоинструктор Светлана
АКПП: Chevrolet Lacetti Обучает в СЗАО ОТЗЫВЫ

Автоинструктор Пётр
МКПП: Daewoo Nexia Обучает в СЗАО ОТЗЫВЫ

Автоинструктор Оксана
АКПП: Hyundai Accent Обучает в СВАО, Мытищах, Королёве, Пушкине ОТЗЫВЫ

Автоинструктор Дмитрий
АКПП: Volkswagen Golf МКПП: Chevrolet Lanos Обучает в СВАО, САО, СЗАО, Долгопрудном ОТЗЫВЫ

Автоинструктор Оксана
АКПП: Kia Spectra МКПП: Chevrolet Lanos Обучает в ЮАО, ЮЗАО, Видном, Подольске ОТЗЫВЫ

Автоинструктор Дмитрий
МКПП:Lada Granta Обучает в ЮВАО, Люберцах ОТЗЫВЫ

Стандарты зарядок в Европе и США

На сегодня существует несколько стандартов зарядных станций. Наибольшую распространенность в мире получили европейские и американские зарядные типы.

В США принято использовать три разновидности зарядок в зависимости от уровня мощности :

Level 1 

Такие устройства заряжают электромобили от сети переменного тока силой до 16А и напряжением 120 В при подключении к обычной бытовой розетке. Поскольку они способны обеспечивать не более 3 кВт мощности, время для заполнения батареи может занимать 8-12 часов.

В настоящее время такой тип зарядок уже не выпускается. Адаптер первого уровня идет в комплекте с электромобилем и представляет собой кабель с обычной вилкой на одном конце и специальным коннектором типа J1772 — на другом.

Level 2 

Зарядные устройства этого типа вырабатывают 7 кВт мощности, при силе тока 30А и напряжении 240 Вольт. Для полного заряда батареи электромобиля требуется около 20-22 кВт.ч и примерно 4-6 часов часа времени. Однако, не все модели авто могут адекватно воспринять такую мощность.

Level 3 

Для наполнения батареи до 80% от зарядки третьего самого мощного (50кВт) уровня требуется не более получаса, поскольку она способна выдавать напряжение от 300 до 600 В и силу тока 100 А

Наполнение такой батареи можно сравнить с наполнением стаканов водой из пожарного шланга: заполнив стаканы на 80% вам потребуется существенно снизить мощность потока, осторожно заполняя до краев оставшиеся 20%, для чего вам потребуется пять-восемь раз больше времени

Европейская классификация зарядок подразделяется на режимы или modes.

Mode1

Соответствует американскому “Первому уровню” и способна отдавать 240 Вольт с силой тока 16 Ампер. Время зарядки длится 10-12 часов.

Mode 2 

При схожем напряжении с Mode 1 , сила тока в таких зарядках возрастает до 32 Ампер. Второй режим способен обеспечить 6-8 часов зарядки батареи.

Mode 3 

Более мощная (43 кВт) зарядка такого типа отдает трёхфазный переменный ток силой 63А. Устройства этого типа обеспечивают полный заряд батареи за 3-4 часа.

Mode 4 

Быстрая зарядка этого типа использует постоянный ток мощностью 240 кВт с напряжением 600 В при силе до 400 А. Для заполнения 80% ёмкости аккумулятора обычного электрокара требуется не более получаса времени.

Чаще всего можно встретить зарядки 1 и 2 уровня. Некоторые PHEV-автомобили не поддерживают зарядку от устройства третьего и четвертого режима в связи с недостаточным объемом батареи, за исключением Mitsubishi Outlander PHEV, который способен поддерживать скоростные типы зарядных устройств.

Двигатель Тесла, принцип работы

Самым главным узлом в автомобиле является асинхронный двигатель, который разработал великий ученый Никола Тесла. Давайте разберем принцип работы асинхронного двигателя

Асинхронный двигатель состоит из двух частей: статора и ротора

статор и ротор асинхронного двигателя

Как же работает асинхронный двигатель? Асинхронный двигатель – это трехфазный двигатель переменного тока с вращающимся магнитным полем.

вращающееся магнитное поле

Вращающееся магнитное поле образуется в обмотках статора. Оно в свою очередь приводит в движение ротор.

подключение асинхронного двигателя к трехфазному питанию

Также нельзя забывать тот факт, что в асинхронном двигателе скорость вращения самого ротора будет меньше, чем скорость вращающегося магнитного поля, которое образуется в статоре двигателя.

Но и это еще не все. Частота вращения такого двигателя зависит от частоты переменного тока, поступающего на его обмотки. Чем больше частота, тем быстрее будет вращается двигатель. Поэтому, управляя частотой, мы можем управлять вращением двигателя, а следовательно, и скоростью самого автомобиля. То есть все управление автомобилем сводится к тому, чтобы преобразовать постоянный ток в переменный трехфазный и возможностью менять частОты переменного трехфазного тока. Это простое преобразование постоянного тока в переменный ток нужной частоты делает автомобили Тесла простыми и надежными.

Что такое электромобиль

Принцип работы электромобиля основан на простых и известных физических принципах. Главной изюминкой, отличающей его от обычных автомобилей, является двигатель. Он работает на электрическом токе. В нём используется механизм электромагнитной индукции.

Двигатель состоит из ротора и статора. Статор, как ему и положено, является неподвижным и служит для пропускания по нему электрического тока с определенной частотой. При этом в статоре генерируется магнитное поле, которое вращает ротор. Это вращение преобразуется в механическую энергию электромобиля.

Скорость движения прямо пропорциональна частоте тока и количеству магнитных полюсов.

Кузов машины, трансмиссия и управление, в целом аналогичны обыкновенным автомобилям.

Примеры электродвигателей сделанных мастерами — самоучками

Самостоятельно изготовленные электромоторы отличаются различными подручными материалами, применяемыми в качестве заготовок для ротора и статора. Представляем некоторые варианты таких самоделок.

Электродвигатель из жестяной банки от «Пепси-Колы»

Для такой самоделки понадобятся следующие комплектующие материалы и инструменты:

  • пустая алюминиевая банка от газированного напитка, которая послужит основой для ротора;
  • катушка от швейной машинки;
  • медная изолированная проволока диаметром около 0.35 мм, длиной примерно 10 метров;
  • деревянная дощечка толщиной 10–15 мм, по габаритам в соответствии с размерами банки от «Пепси-Колы»;
  • 4 (четыре) круглых постоянных магнита в виде тонких пластинок, которые будут создавать магнитное поле вместо статора;
  • металлическая вязальная спица;
  • два небольших деревянных бруска размерами 15×15×60 мм;
  • короткий брусок в виде кубика с размером стороны 15 мм;
  • медная проволока толщиной 1.0 мм для изготовления контактов;
  • для фиксации катушки потребуется саморез 3.5×30 мм, а для закрепления контактов — саморезы 2×15 мм (3 шт.) и 3 широких шайбы под них;
  • источник питания 12 В;
  • тюбик суперклея;
  • штангенциркуль и чертилка для разметки;
  • маркер для нанесения точек разметки;
  • ручная электрическая дрель;
  • мультиметр для проверки наличия контакта;
  • набор отверток, нож для зачистки, пассатижи, бокорезы и возможно другой инструментарий для монтажа электрической проводки.

Порядок проведения работ

Рекомендуем выполнять работы в следующей последовательности.

  • Вручную аккуратно намотаем медную проволоку на катушку. Обязательно фиксируем концы.

  • По центру деревянной дощечки закрепляем намотанную катушку, которая уже превратилась в электромагнит, с помощью длинного самореза.
  • Размечаем с помощью маркера места нахождения постоянных магнитов, как на изображении:
  • Наклеиваем на обозначенные места магниты, соблюдая при этом их полярность.
  • С помощью дрели сверлим по центру банки отверстия под ось (вязальная спица).
  • Устанавливаем в эти отверстия спицу.
  • В деревянных брусках 15×15×60 мм с одного из краев сверлим отверстие под спицу.
  • Закрепляем с помощью клея на деревянной дощечке конструкцию ротора с деревянными брускам (подставками).
  • На спицу (ось ротора) дополнительно устанавливаем брусок в виде кубика, при этом его ребро должно совпадать с осью установки магнитов.
  • Из медной проволоки толщиной 1.0 мм изготавливаем управляющие контакты, один конец которых закрепляем на деревянном основании. Расстояние между контактами подбирается таким образом, что вращаясь, кубик должен их замыкать при касании ребра.
  • Контакты электромагнита зачищаются и подключаются к части контактов толстой медной проволоки, закрепленной на деревянном основании.

После подключения источника питания 12 В двигатель может работать.

Электродвигатель из винной пробки и спицы

Этот вариант похож на предыдущий, только для изготовления ротора применяется подручный материал в виде винной пробки и вместо четырех небольших магнитов два более крупных с дополнительными под них деревянными опорами.

Процесс изготовления ротора из винной пробки производится следующим образом.

  • Торцы винной пробки подрезаются до ровных площадок.
  • Сверлиться в середине торцов пробки отверстие под спицу. С одного края на спицу наматывается изолента.
  • В торце пробки вставляются две медные проволоки толщиной 1.0 мм, фиксируются клеем.
  • Выполняется обмотка пробки тонкой медной проволокой в одном направлении, как показано на изображении:
  • Места соединения толстой и тонкой медных проволок зачищаются и крепятся (лучше припаять).

Далее процесс сборки практически ничем не отличается от предыдущего варианта и получается электродвигатель своими руками с ротором из винной пробки.

Показаны лишь самые известные из множества подобных самоделок.

Строение и принцип работы

Работает электродвигатель автомобиля по принципу электромагнитной индукции. Именно он взят сегодня за основу. Современные электромобили, по своей сути, мало чем отличаются от их, которые мы каждый день можем наблюдать на дорогах страны. Вообще говоря, основными частями такой техники являются:

  • Контроллер;
  • Аккумуляторные батареи.

Мы поговорим подробнее именно о сердце авто. Итак, оно работает на основе законов электромагнитной индукции. Для тех, кто не знаком с таком понятием физики, можно сказать, что данное явление связано с возникновением ЭДС в замкнутом контуре, когда в нем начинает меняться магнитный поток. Здесь все достаточно просто. Электродвигатель просто преобразует электрическую энергию в механическую, которая и позволяет двигаться автомобилю. В настоящее время коэффициент полезного действия таких агрегатов равен приблизительно 90 процентов. Это весьма внушительная цифра.

Как и любой другой электродвигатель, агрегат, устанавливаемый в электромобилях, имеет свои собственные характеристики. К таковым можно отнести:

  • Мощность агрегата;
  • Максимальный крутящий момент, создаваемый им;
  • Частота вращения.

По сути, все стандартно. Единственное отличие от тех моделей, которые используются в промышленности, заключается в изменении этих параметров применительно к автомобилю.

Все электродвигатели могут питаться от источника постоянного напряжения или источника переменного напряжения. В данном случае речь идет чаще всего именно о первом варианте. Батареи, которые используются в таких машинах, создают на выходе значение в 96-192 Вольта. Этого вполне достаточно для создания ЭДС. для подключения электродвигателя переменного тока используется трехфазная схема. Современные модели электромобилей отличаются тем, что в них сам электродвигатель соединен напрямую с колесом. Такая конструкция позволяет в значительной степени улучшить управляемость машины.

Стоит отметить, что некоторые самые прогрессивные модели, которые оснащены агрегатом, работающем на переменном токе, способны в процессе торможения подзаряжать батареи. Это приводит к увеличению их срока эксплуатации в несколько раз. Это некое решение проблемы ограниченности хода. Такие устройства способны увеличивать пробег авто без подзарядки на целый 10-20 процентов. Для электромобиля это вполне внушительная цифра.

В остальном работает электродвигатель автомобиля точно так же, как и любой другой агрегат такого типа. Здесь имеется рабочий орган, который и соединяется с колесом. При подаче электрической энергии обмотка возбуждения начинает действовать на ротор мотора, который начинает вращаться вследствие ЭДС. Это движение передается на рабочие органы. Электродвигатель сегодня можно запитывать самыми разнообразными методами. В бытовых условиях используются трехфазные розетки или обычные однофазные их варианты. Все зависит от конкретной конструкции устройства, которое требуется запустить.

Типы разъемов зарядных кабелей

Так же, как не существует единого стандарта для зарядных устройств, нет единого разъема для всех электромобилей. Будущему владельцу электромобиля следует знать несколько основных европейских и американских разъемов. В последнее время на многих европейских заправках появились разъемы для американских автомобилей и наоборот.

Европейские разъемы для зарядных устройств

Mennekes

Разработчик электротехники компания Mennekes в 2013 году внедрила новый стандарт разъемов в Европе. Это тип соответствует зарядке Type 2 и считается самым распространённым в Европе. Он используется для однофазной сети мощностью до 7,4 кВт. или для трёхфазной с напряжением 380В с поддержкой мощности заряда до 43,5 кВт. Модифицированная в США версия этого разъема позволяет также заряжать автомобили Tesla с мощностью 120 кВт. Самыми распространенными автомобилями, использующими такой тип разъема являются:

  • Renault Zoe,
  • Hyundai Ioniq,
  • Opel Ampera-e,
  • Tesla Model S и Model X.

CHAdeMО

Этот стандарт “быстрых” зарядных станций был принят в 2010 году после объединения автоконцернов Nissan, Mitsubishi, Subaru и Toyota в ассоциацию под названием CHAdeMO — CHArge de MOve (от фр. “заряжай для движения”). Автомобили, выпущенные до 2018 года могли подключаться к зарядным станциям постоянного тока мощностью 50-200 кВт для заполнения батареи на 80% за полчаса. После 2018 года ассоциация “апгрейдила” стандарт до версии CHAdeMO 2.0, позволяющей распоряжаться мощностью до 400 кВт. Аналогичный объем 80% доступен  водителю всего за 10-15 минут.

Наиболее популярные электромобили этих брендов, использующих этот тип зарядки в Европе:

  • Nissan Leaf 1.1,
  • Citroen ё-Berlingo,
  • Renault ZOE ZE,
  • Smart ED,
  • Mercedes-Benz B250E.

Американские разъемы для зарядных устройств

SAE J1772

Это тип разъема был создан в 2009 году американскими разработчиками из организации SAE, которые создали 5-точечный разъём стандарта J1772 для зарядки электромобилей от однофазной бытовой сети переменного тока 220В мощностью до 7,2 кВт. Вначале формат был широко распространен в США и Японии, однако после выпуска некоторых европейских моделей появился в Европе. После обновления до уровня SAE Combo 3 типа такие зарядные устройства могут заряжать электрокары током мощностью от 90 до 240 кВт при силе 450 и 600 А. Этот стандарт разъемов используют такие популярные электрокары и гибриды:

CCS Combo

Этот универсальный стандарт разъёмов для быстрой зарядки по праву можно считать глобальным и набирающим наибольшую популярность в мире, поскольку поддерживается крупными мировыми автоконцернами, создавшими сеть Ionity: VW Group, General Motors, BMW AG, Ford Motor Company, Daimler AG, Stellantis (Fiat Chrysler Group + PSA Peugeot Citroen Opel Group).

  • Volkswagen ID-3,
  • KIA Niro,
  • Mercedes EQC;
  • Porsche Taycan,
  • Audi e-tron.

Принцип работы и устройство

Электродвигатель включает в себя статор и ротор. Вращающееся магнитное поле в статоре действует на обмотку ротора и наводит в нём ток индукции, возникает вращающий момент, который приводит в движение ротор. Электроэнергия, поступающая на обмотки мотора, преобразуется в механическую энергию вращения.

Благодаря развитию технологии электродвигатели нашли применение в разных отраслях, например, автомобилестроении. Причем они способны использоваться либо отдельно, либо совместно с двигателем внутреннего сгорания (ДВС). Последний вариант – гибридные авто.

От электродвигателей, применяемых на производствах, агрегат для авто отличается малыми габаритами, но повышенной мощностью. К тому же современные разработки все больше отдаляют двигатели для автомобилей от иных подобных устройств. Характеристиками электромобилей являются не только показатели мощности, крутящего момента, но и частота вращения, ток и напряжение. Поскольку от этих данных зависит передвижение и обслуживание авто.

Чтобы лучше разобраться в многообразии, которое нам дарит авторынок, стоит рассмотреть существующие виды электродвигателей для электромобилей.

Их можно условно классифицировать по типу тока:

  • устройства переменного тока;
  • конструкции постоянного тока;
  • решения универсального образца (способны функционировать от постоянного и переменного тока).

Электродвигатели переменного тока делятся на группы:

  • асинхронные – скорость вращения магнитного поля статора выше скорости вращения ротора;
  • синхронные – частоты вращения магнитного поля статора и ротора совпадают.

С учетом используемого количества фаз, электрические устройства разделяют на: одно-, двух-, трехфазные.

Если привести реальные образцы, используемые известными автопроизводителями, то хороший пример применения трехфазного агрегата асинхронного типа – Volt от Chevrolet. Он является гибридным автомобилем. Пример трехфазного синхронного двигателя — i-MiEV от Mitsubishi. А этот автомобиль является исключительно электрическим.

Силовая установка Chevrolet Volt

Следует отметить, что у разных производителей разные двигатели, отличающиеся массой, мощностью, габаритами и прочими параметрами.

Есть еще одна классификация – по конструкции щеточно-коллекторного узла. Такие агрегаты бывают:

  • Бесколлекторными. Представляют собой замкнутую систему, в которую входят: преобразователь координат, инвертор и извещатель положения.
  • Коллекторными. Щеточно-коллекторный узел играет роль в такой конструкции одновременно и извещателя положения ротора, и переключателя тока в обмотках. В основном используется ток постоянной частоты.

В конструкциях электромобилей зачастую задействуются коллекторные моторы, хотя есть примеры и с иными моделями. Как вариант — автомобиль «Санрейсер», в котором установлен как раз бесколлекторный двигатель от компании General Motors. При массе 3,6 кг его КПД составляет 92%.

Нельзя не отметить еще один тип двигателя, который используется в некоторых современных моделях авто. Это система мотор-колесо. Пример — спорт-кар Volage. В такой конструкции предусмотрена возможность регенерации энергии торможения. Для этого используется тяговый двигатель Active Wheel. Он весит всего 7 кг, что позволяет добиться приемлемой массы колеса – 11 кг.

Самой распространенной сегодня конструкцией является решение с питанием от аккумуляторной батареи. Она нуждается в регулярной зарядке, способной реализоваться за счет внешних источников, генератора в конструкции и рекуперации энергии торможения. Генератор действует от ДВС, поэтому такая схема работы уже не относится к чисто электрическим. Подобные машины называют гибридными.

Аккумуляторная батарея электромобиля

Тяговая аккумуляторная батарея электромобиля имеет существенные отличия от АКБ автомобилей с ДВС.
Прежде всего, выходное напряжение аккумуляторных батарей электромобилей с целью уменьшения токов, соответственно тепловых и энергопотерь, значительно выше, чем традиционные 12 вольт. Например, в первые автомобили марки Lola-Drayson разработчики выбирали аккумуляторные батареи емкостью 60 кВт*час номинальным напряжением 700 В. Нетрудно подсчитать, что при мощности электродвигателя 200 кВт такой автомобиль может проехать без подзаряда не более 15 минут. В условиях кольцевых автогонок на спортивных электрокарах необходимо производить замену аккумулятора чаще, чем колес. Гоночный электромобиль ближайшего будущего способен разогнаться до 100 км/час за одну секунду.

Большинство аккумуляторных батарей для электромобилей имеет встроенный контроллер процесса заряда батареи по аналогии с аккумуляторами для ноутбуков, только на более высоком уровне. Кроме этого, в мощные аккумуляторные блоки устанавливают встроенную систему жидкостного охлаждения, которая также увеличивает их массу.

Реализация

Сервисный центр по обслуживанию электромобилей работает с 2014 года. За это время компания собрала компетентную команду специалистов, разбирающихся не только в автомобилях, но и в программном обеспечении.

«Четкое понимание того, как интегрируются компоненты электромобиля, как они увязываются в единую систему посредством софта, как новые компоненты взаимодействуют со штатными системами автомобиля, такими как тормоза или ABS, крайне важно как для обслуживания электромобилей, так и для конверсии автомобилей на классическом топливе в электромобили», — говорит Михаил Ефимов, соучредитель и генеральный директор EVC. Первым проектом EVC в 2017 году стала разработка и производство литий-ионной аккумуляторной батареи для электромобиля ИЖ Концерна «Калашников»

Вторым — переделка автомобиля Aston Martin DB9. В качестве электрической начинки использовались компоненты Tesla Model S: батарейка, два электродвигателя, вся электропроводка, водительский и центральный экраны

Первым проектом EVC в 2017 году стала разработка и производство литий-ионной аккумуляторной батареи для электромобиля ИЖ Концерна «Калашников». Вторым — переделка автомобиля Aston Martin DB9. В качестве электрической начинки использовались компоненты Tesla Model S: батарейка, два электродвигателя, вся электропроводка, водительский и центральный экраны.

Интеграция электромоторов на оси потребовала изменения конструкции подвески и геометрии аккумуляторной батареи, так как габариты Aston Martin отличаются от габаритов Tesla Model S. В автомобиле была полностью заменена электропроводка, кроме тех участков, которые нужны для интеграции штатных систем — тормозов, систем безопасности, освещения, системы кондиционирования

Также важной была адаптация ПО

Aston Martin получил литий-ионную батарею емкостью 75 кВт·ч, дающую запас хода порядка 350 км, два электромотора суммарной мощностью 500 л.с, разгоняющих электромобиль до 100 км/ч за 5,5 с.

Так выглядит превращение обычной машины в электромобиль

(Фото: из личного архива)

Владислав Мещеряков, соучредитель EVC, говорит, что сегодня компания получает все больше обращений и запросов на переделку частных автомобилей и коммерческих парков в электромобили. Для частных заказчиков это больше имиджевые проекты — возможность дать вторую жизнь любимому классическому автомобилю. А вот для компаний, управляющих большим парком транспорта, переход на электрическую тягу создает много возможностей для сокращения операционных затрат, связанных с заправкой и ремонтом, а также позволяет внедрить новейшие решения по управлению эффективностью парка.

Еще одним проектом, реализованным для частного заказчика, стал электрический Fiat Ducato. На нем первый раз была установлена аккумуляторная батарея собственной разработки. На автомобиль была установлена литий-титанатная батарея EVCLTO55, состоящая из четырех модулей суммарной емкостью 22 кВт·ч. Реальные тесты показали, что даже при полной загрузке (общая масса с водителем порядка 2,9 т) автомобиль проезжает на этой батарее 150 км. Это очень хороший результат с учетом небольшой емкости батарейки.

История создания

Люди уже давно задумываются об использовании электричества в качестве силы, способной придать движение транспортным средствам. Первый электромобиль в мире и вовсе появился до создания ДВС, и произошло это в 1841 году.

Спустя 58 лет в Санкт-Петербурге был представлен 17-местный омнибус, оснащенный 4-сильным электромотором, запас хода которого составлял 64 км.

Следующая веха в истории электромобилей относится к началу 30-х годов XX века. В 1931 году гениальный изобретатель Никола Тесла, купив радиоэлектронные детали в обычном магазине, собрал устройство, которое при установке его вместо бензинового мотора смогло сдвинуть автомобиль с места. Мощность агрегата составила 80 л. с.

В течение следующих почти 55 лет технология практически не изменилась. В 1996 году с конвейера сходит первый серийный электрокар, разработка которого была осуществлена компанией General Motors. Однако случилось это не из-за желания автопроизводителя или требований рынка: просто в Калифорнии, где продавались автомобили GM, вышел закон, ужесточающий требования к машинам: новые авто, по мнению авторов законопроекта, вообще не должны были загрязнять окружающую среду. Но довольно скоро он был отменён, поскольку в техническом отношении выполнить его на тот момент не представлялось возможным. General Motors выпускала электроавто в течение 7 лет, но солидными продажами похвастать не могла: за этот период времени было реализовано чуть более 1150 экземпляров модели, которые и по сей день хранятся в частных коллекциях (нераспроданные транспортные средства были пущены под пресс).

На сегодняшний день ведущим популяризатором идеи электромобилей является Илон Маск, купивший компанию Tesla Motors и всерьёз занявшийся её развитием. Серийный электромобиль Tesla Roadster, выпущенный в 2008 году, продавался в течение 4 лет, но из-за слишком высокой стоимости, равной 109000$, доступен он был только очень богатым людям. В 2012 году выходит уже более доступная машина Model S, пережившая впоследствии две модернизации и благоприятно встреченная как экспертами, так и рядовыми автолюбителями.

2015 год был ознаменован выходом Model X: кроссовер отличался большим запасом хода (от 354 до 539 километров в зависимости от модификации и других параметров), превосходной динамикой (до сотни модель способна разогнаться за 3,2 секунды), а также множеством необычных функций, ранее не используемых другими производителями (например, подсветкой салона в такт звучащей музыке и др.).

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector