Определение метанового числа попутного нефтяного газа при высоких давлении и температуре

Метан

Метан также называют сжатым природным газом СПГ так как он имеет природное происхождение. Этот газ не имеет запаха и цвета и является простейшим углеводородом. Из-за особых химических характеристик хранение данного газа в жидком состоянии невозможно. Этот тип альтернативного топлива для двигателей внутреннего сгорания используется реже нежели СНГ (пропан) по ряду причин, о которых вы скоро узнаете. Простые баллоны для метановой установки не подходят по той причине, что метан содержится в специальных резервуарах под высоким давлением порядка 220 атмосфер. Стенки такого баллона довольно толстые, от 0.6 см и толще. Для увеличения прочности используется бесшовная конструкция баллона. Вес такого баллона превышает 60 кг, а объем газа, который в них хранится, варьируется в диапазоне от 11 до 15 кубометров. Кроме того, баллоны для метана используются исключительно цилиндрические, тороидальные не подходят ни в коем случае. Отличается также и КПД топлива, на метане мотор сжигает на 10-20% больше нежели на бензине. То есть, в переводе на цифры получается, что 1 кубометр метана равен 1 литру бензина. Из-за чего на метановом ГБО принято использовать сразу несколько довольно громоздких баллонов. Снижение мощности при этом составляет порядка 20%, это объясняется тем, что метан имеет меньшую теплоотдачу, а при поступлении в двигатель занимает большой объем в цилиндрах. Отличия касаются также и степени сжатия, у СНГ приемлемым является соотношение 11:1, в то время как для СПГ этот показатель составляет — 13:1. При этом необходимо понимать, что существенное увеличение степени сжатия сделает невозможным использование бензина в качестве топлива.

Подача газового топлива осуществляется посредством мембранных редукторов, для пропана используются одноступенчатые редукторы, для метана — двух. Цена газовых редукторов примерно одинаковая, чего не скажешь о баллонах. Как я писал выше, для метана используется более прочный бесшовный баллон, цена которого может варьироваться в диапазоне от $400 до $800.

Коррекция зажигания. Для улучшения эффективности работы мотора при использовании ГБО применяют корректировку зажигания. Из-за более высокого октанового числа газовое топливо горит медленнее, а значит зажигать ее следует раньше. На ГБО 4 поколения используется специальное устройство под названием вариатор УОЗ, о котором я уже рассказывал в предыдущих своих статьях. Также может производиться перепрограммирование микроконтроллера. В карбюраторных ДВС производится ручная корректировка трамблера, он смещается на определенный угол.

Отличается также и установка пропан-бутанового ГБО и ГБО работающего на метане. В большей мере речь идет о безопасности. Так для метановых установок выносное заправочное устройство (ВЗУ) должно устанавливаться за пределами багажного отделения, то есть на внешней стороне кузова (как правило бампер). В то время как для пропана место ВЗУ может располагаться где угодно, в бампере, в лючке бензобака, в багажнике и т. д.

Большое внимание уделяется метановым газовым магистралям, которые должны проходить в специальных вентиляционных рукавах. Сам рукав должен оснащаться эжектором с выходом в забортное пространство

Магистрали должны быть оснащены деформационными навивками, которые позволяют предупредить разрыв, протирание от вибрации или деформацию в случае аварии.

Метановые баллоны крепятся максимально тщательно и надежно, в местах вероятных трений устанавливаются специальные мягкие прокладки.

Что касается пропан-бутана, здесь обязательно наличие мультиклапана, который выполняет сразу несколько функций: контролирует заполнение баллона, стравливает избыточное давление, а также выступает в качестве запорной арматуры. Баллоны должны регулярно проходить процедуру освидетельствования и располагаться вне краш-зоны. То есть в местах с наименьшей вероятностью повреждения в случае ДТП, как правило, это область заднего ряда сидений, багажник или место где располагается запаска.

На сегодня все

Как видите отличий между двумя типами газа довольно много и заключаются они даже не в химическом или молекулярном составе… Важно знать и понимать на каком именно газе ездит ваш автомобиль для того, чтобы знать на какой заправке вам заправляться, а также как именно и с какой частотой вам обслуживать ваш автомобиль

Свои вопросы и пожелания вы можете оставить, используя форму для комментариев. Буду рад если вы дополните меня, в случае если я упустил какой-то важный момент

Всем пока, спасибо за внимание и до новых встреч на ГБОшнике

Похожие

Октановое числоСостав бензина

Руководство по эксплуатации автомобилей на пропан бутанеВыполнение операций без надлежащей осторожности из-за некомпетентности, небрежности или несоблюдая действующие нормативы, может привести…

Инструкция по эксплуатации газобаллонных автомобилей…

Россия ООО «элинокс» плита Газовая кухонная пгк 69 п II а категория II 2H3+Плита предназначена для использования газов второго (природный по гост 5542) и третьего (сжиженный по гост 20448 – пропан технический,…

Руководство по организации эксплуатации газобаллонных автомобилей, работающихРуководство предназначено для руководящих, инженерно-технических работников, обслуживающего и водительского персонала, связанных…

Руководство по эксплуатации Установка для промывки охлаждающей системы автомобилейСнятие, очистка большинства типов и моделей радиаторов и замена охлаждающей жидкости

Руководство по эксплуатации м 016. 000

00 РэРуководство по эксплуатации предназначено для ознакомления с измерителем эффективности тормозных систем автомобилей «Эффект» (в дальнейшем…

Руководство по эксплуатации содержаниеРуководство по эксплуатации предназначено для изучения состава, принципа действия, технических характеристик, порядка установки и…

Руководство по эксплуатации СодержаниеКру кв-02-26 предназначено для изучения изделия, правил его монтажа и эксплуатации. Руководство по эксплуатации содержит основные…

Руководство по монтажу и эксплуатации содержаниеРуководство предназначено для администрации и персонала, эксплуатирующего подъемник, а также для техников, производящих обслуживание…

Руководство по монтажу и эксплуатации содержаниеДля правильной и безопасной эксплуатации фэнкойла, а также для избежания материального ущерба и несчастных случаев необходимо внимательно…

Руководство по эксплуатации СодержаниеПанели кодовые устанавливаются в служебные, жилые и производственные помещения и здания в качестве системы ограничения доступа

Руководство по эксплуатации содержаниеНастоящее руководство по эксплуатации распространяется на взрывозащи-щѐнное устройство «сенс» преобразователь магнитный поплавковый…

Руководство по эксплуатации содержаниеНастоящее руководство по эксплуатации распространяется на взрывозащи-щѐнное устройство «сенс», преобразователь магнитный поплавковый…

Руководство по эксплуатации 2007Прибор проверки герметичности пневматического тормозного привода «М-100-02» предназначен для проверки герметичности пневматического…

Руководство по эксплуатации содержаниеНастоящее руководство по эксплуатации (РЭ) является руководящим документом при установке и эксплуатации источника бесперебойного…

Руководство по эксплуатации 6470-3902035 рэРуководство предназначено для водителей и работников автомобильного транспорта, связанных с эксплуатацией автомобилей «Урал». В руководстве…

Руководство, инструкция по применению

Инструкция, руководство по применению

Методика расчета для природного газа

Электронная педаль газа: что это такое и как работает

Примерный расход газа на отопление считается исходя из половинной мощности установленного котла. Все дело в том, что при определении мощности газового котла закладывается самая низкая температура. Это и понятно — даже когда на улице очень холодно, в доме должно быть тепло.

Посчитать расход газа на отопление можно самостоятельно

Но считать расход газа на отопление по этой максимальной цифре совсем неверно — ведь в основном температура значительно выше, а значит, топлива сжигается намного меньше. Потому и принято считать средний расход топлива на отопление — порядка 50% от теплопотерь или мощности котла.

Считаем расход газа по теплопотерям

Если котла еще нет, и вы оцениваете стоимость отопления разными способами, считать можно от общих теплопотерь здания. Они, скорее всего, вам известны. Методика тут такая: берут 50% от общих теплопотерь, добавляют 10% на обеспечение ГВС и 10% на отток тепла при вентиляции. В результате получим средний расход в киловаттах в час.

Далее можно узнать расход топлива в сутки (умножить на 24 часа), в месяц (на 30 дней), при желании — за весь отопительный сезон (умножить на количество месяцев, на протяжении которых работает отопление). Все эти цифры можно перевести в кубометры (зная удельную теплоту сгорания газа), а потом перемножить кубометры на цену газа и, таким образом, узнать затраты на отопление.

Наименование толпива Единица измерения Удельная теплота сгорания в кКал Удельная теплота сгорания в кВт Удельная теплота сгорания в МДж
Природный газ 1 м 3 8000 кКал 9,2 кВт 33,5 МДж
Сжиженный газ 1 кг 10800 кКал 12,5 кВт 45,2 МДж
Уголь каменный (W=10%) 1 кг 6450 кКал 7,5 кВт 27 МДж
Пеллета древесная 1 кг 4100 кКал 4,7 кВт 17,17 МДж
Высушенная древесина (W=20%) 1 кг 3400 кКал 3,9 кВт 14,24 МДж

Пример расчета по теплопотерям

Пусть теплопотери дома составляют 16 кВт/час. Начинаем считать:

  • средняя потребность в тепле в час — 8 кВт/ч + 1,6 кВт/ч + 1,6 кВт/ч = 11,2 кВт/ч;
  • в день — 11,2 кВт * 24 часа = 268,8 кВт;
  • в месяц — 268,8 кВт * 30 дней = 8064 кВт.

Переводим в кубометры. Если использовать будем природный газ, делим расход газа на отопление в час: 11,2 кВт/ч / 9,3 кВт = 1,2 м3/ч. В расчетах цифра 9,3 кВт — это удельная теплоемкость сгорания природного газа (есть в таблице).

Так как котел имеет не 100% КПД, а 88-92%, придется внести еще поправки на это — добавить порядка 10% от полученной цифры. Итого получаем расход газа на отопление в час — 1,32 кубометра в час. Далее можно рассчитать:

  • расход в день: 1,32 м3 * 24 часа = 28,8 м3/день
  • потребность в месяц:28,8 м3/день * 30 дней = 864 м3/мес.

Средний расход за отопительный сезон зависит от его длительности — умножаем на количество месяцев, пока длится отопительный сезон.

Этот расчет — приблизительный. В какой-то месяц потребление газа будет намного меньше, в самый холодный — больше, но в среднем цифра будет примерно такой же.

Расчет по мощности котла

Расчеты будут немного проще, если имеется рассчитанная мощность котла — тут уже учтены все необходимые запасы (на ГВС и вентиляцию). Потому просто берем 50% от расчетной мощности и далее считаем расход в день, месяц, за сезон.

Например, проектная мощность котла — 24 кВт. Для расчета расхода газа на отопление берем половину: 12 к/Вт. Это и будет средняя потребность в тепле в час. Чтобы определить расход топлива в час, делим на теплотворную способность, получаем 12 кВт/час / 9,3 к/Вт = 1,3 м3. Далее все считается как в примере выше:

  • в день: 12 кВт/ч * 24 часа = 288 кВт в перерасчете на количество газа — 1,3 м3 * 24 = 31,2 м3
  • в месяц: 288 кВт * 30 дней = 8640 м3, расход в кубометрах 31,2 м3 * 30 = 936 м3.

Далее добавим 10% на неидеальность котла, получим, что для этого случая расход будет чуть больше 1000 кубометров в месяц (1029,3 куб). Как видите, в этом случае все еще проще — меньше цифр, но принцип тот же.

По квадратуре

Еще более приблизительные расчеты можно получить по квадратуре дома. Есть два способа:

  • Можно посчитать по СНиПовским нормам — на обогрев одного квадратного метра в Средней Полосе России в среднем требуется 80 Вт/м2 . Эту цифру можно применять, если ваш дом построен по всем требованиям и имеет хорошее утепление.
  • Можно прикинуть по среднестатистическим данным: при хорошем утеплении дома требуется 2,5-3 куб/м2;
  • при среднем утеплении расход газа 4-5 куб/м2.

Каждый хозяин может оценить степень утепления своего дома, соответственно, можно прикинуть, какой расход газа будет в данном случае. Например, для дома в 100 кв. м. при среднем утеплении потребуется 400-500 кубометров газа на отопление, на дом в 150 квадратов уйдет 600-750 кубов в месяц, на отопление дома площадью 200 м2 — 800-100 кубов голубого топлива. Все это — очень приблизительно, но цифры выведены на основании многих фактических данных.

Октановое число — топливо

Октадециламин 613 Октадециловый спирт 608 Октановое число топлив 20, 76, 79 Октатриен-1 5 7-ин — 3 356 Олеиловый спирт 609 Олефины 38 ел.

Октадециламин 706 Октадециловый спирт 700 Октановое число топлив 21, 83, 86 88 Октатряен-1 5 7-ин — 3 423 Олеиловый спирт 701 Олеиновая кислота 542 Олефины 45 ел.

Вклад отдельных компонентов смеси в суммарное октановое число топлива часто не пропорционален октановому числу чистого вещества, поэтому следует различать октановое число смешения в составе бензина.

Первые незначительные количества этиловой жидкости повышают октановые числа топлив интенсивнее, чем последующие: если первый миллилитр этиловой жидкости ( на 1 кг бензина) повышает его октановое число, примерно, на 10 — 15 единиц, то второй — лишь на 5 — 7 единиц, а третий — на 2 — 8 единицы.

Особенное влияние оказывают сернистые соединения на октановые числа топлив и на приемистость их к этиловой жидкости.

В табл. 5 приведены данные изменения октановых чисел топлив с сернистыми соединениями до и после хранения. Наибольшее их снижение наблюдалось в присутствии меркаптанов.

Моторный метод был разработан для определения октановых чисел топлив, применяющихся в двигателях грузовых автомобилей, эксплуатирующихся главным образом на маршрутах большой протяженности вне городских условий. Эти двигатели работают при относительно более постоянном и жестком режиме и более высокой тепловой напряженности. Легковые автомобили эксплуатируются преимущественно в городских условиях, что обусловливает частые пуски, ограниченную мощность и меньшую тепловую напряженность двигателя. В связи с этим был разработан и с 1948 г. широко применяется исследовательский метод определения октановых чисел автомобильных топлив, который дает значения детонационной стойкости, близкие к получающимся в дорожных условиях на легковых автомобильных двигателях.

В табл. 5 приведены данные изменения октановых чисел топлив с сернистыми соединениями до и после хранения. Наибольшее их снижение наблюдалось в присутствии меркаптанов.

Предназначен для измерения интенсивности детонации при определении октановых чисел топлива на установках типа ИТ9 по моторному и исследовательскому методам при стандартных режимах работы.

Зависимость между требуемым октановым числом топлива и продолжительностью пробега автомашины.

Характерно, что особенно велики требования к октановому числу топлива на первых 1000 — 2000 км пробега. В дальнейшем в связи со стабилизацией ( или достижением равновесного состояния) нагароотложения требования к октановому числу топлива с увеличением пробега изменяются незначительно.

Для испытаний используется установка, применяемая при определении октановых чисел топлив по моторному методу, переоборудованная по типу дизеля путем замены головки карбюраторного двигателя дизельной головкой. Вместо индикатора со-сложной оптической настройкой и нокметром используются обычные индикаторы, которые фиксируют моменты впрыска и воспламенения безинерционными лампами, находящимися на маховике двигателя и связанными с индикаторами впрыска и воспламенения. Для наблюдения за безинерционными лампами с целью установления моментов впрыска и воспламенения имеется визирная трубка, смонтированная на кронштейне над маховиком двигателя. Топливо подается в камеру сгорания топливным насосом через форсунку.

Регулировка приборов, замеряющих детонацию, и определение октановых чисел топлив и компонентов с октановыми числами ниже 68 производятся на первичных эталонных топливах.

При выделении мочевиной н-парафиновых углеводородов из бензиновых фракций повышается октановое число топлива. Подобное разделение применимо к высококипящим фракциям с целью получения н-пара-финовой фракции, используемой в качестве компонента дизельных топлив. Мочевина селективно удаляет компоненты с длинной цепью, имеющие высокую температуру плавления, поэтому комплексообразование может быть использовано для депарафинизации при понижении температуры застывания керосинового сырья для удовлетворения требованиям спецификаций на реактивные топлива. Этот же процесс может применяться при депарафинизации сырья для смазочных масел с целью понижения температуры текучести масла, а также для получения и модификации нефтяных парафинов. Вполне возможно использование мочевины и для получения чистых фракций н-углеводородов.

На графике видно, что при малых угловых скоростях октановое число топлива должно быть выше.

Применение баллонов

Есть два основных типоразмера баллонов: цилиндрический и тороидальный. Выбирать можно тот, который больше соответствует конструкционным особенностям автомобиля.

Цилиндрический

Внешне схож с домашним газовым баллоном. Разница только в длине и диаметре. Может быть от 20 до 90 литров. Установка их обычно проводится за задними пассажирскими креслами, между арками с помощью фиксирующих лент. Иногда крепление допускается под днищем авто.

Внешний вид баллона в багажнике

Тороидальные

Емкость немного напоминает большую таблетку. Размер ее, как правило, сопоставим с запасным колесом. Крепление проводится также вместо запасного колеса. Из ниши колесо можно убрать совсем, а вместо него в багажнике возить небольшую «докатку».

Мультиклапан

Для установки мультиклапана каждый баллон имеет стандартное отверстие. Клапан разделен на два блока: для подключения заправочного оборудования и для расходного потока в блок цилиндров. Поэтому для заправки не нужно ничего демонтировать. Там же зафиксирован и поплавок, обозначающий уровень заправки баллона.

Можно вывести показания уровня газа в салон, но это редко кому бывает нужно. Ведь в баке всегда есть еще и бензин, не позволяющий остаться посредине дороги без топлива. Заправку желательно проводить до максимальных допустимых значений. Но не перекачивать. Так как это может привести к взрыву емкости.

Сравнение метана и пропана

Общие преимущества газов в топливе

Оба газа имеют общие преимущества относительно бензина, что позволяет год от года расширять их применение в двигательных установках.

  • Более низкая цена относительно бензина;
  • Экологическая безопасность, меньшее влияние на здоровье человека;
  • Увеличение срока езды без заправки за счет большего объема топлива, которое можно запасти;
  • В комплексе замедление износа деталей автомобиля, особенно при использовании изначально приспособленного двигателя.

Общие недостатки газов в топливе

Существует также несколько оснований, по которым бензин все еще сохраняет лидирующее положение как автомобильное топливо.

  • Меньшая доступность газов для потребителя (количество заправок, а также центров обслуживания автомобилей с газовыми установками);
  • Падение мощности автомобиля при использовании газового топлива;
  • Повышенный износ некоторых особо чувствительных участков двигателя (например, клапанов) с учетом специфики «сухого горения» газового топлива.

Основные различия метана и пропана

Метан и пропан существенно отличаются друг от друга как по специфике хранения, так и по специфике использования в качестве топлива, каждый имеет свои преимущества и недостатки.

  • По ГБО – дополнение двигателя автомобиля пропановой установкой существенно (до 70%) дешевле, чем установка метанового ГБО;
  • По стоимости – в перспективе, после того, как окупится установка ГБО, метан дает высокую экономию средств на топливо относительно пропана;
  • Снижение мощности – пропан, относительно бензина, дает незначительное снижение мощности до 3-5% двигателя, и то при развитии скорости выше 140 километров в час. Метан «ослабляет машину» до 20%. Но стоит учитывать, что данное обстоятельство было почти нивелировано в современных специализированных установках;
  • Экологическая чистота – пропан имеет примеси и не считается полностью безопасным для человека и экологии. Метан – самое чистое топливо на планете, по своей безопасности превосходящий электрические двигатели и солнечные батареи, находящийся на одном уровне со спиртовыми установками;
  • Вес баллонов и объем топлива – пропан, сжимаемый под невысоким давлением вместе со своим резервуаром, весит в несколько раз легче, чем баллон сжатого метана. При этом пропана можно запасти на путь втрое более долгий, чем метана;
  • Взрывоопасность – метан вдвое менее взрывоопасен, чем пропан, а с учетом рассеивания считается максимально безопасным относительно почти всех других видов топлива. Стоит также отметить, что баллоны метана при аварии повреждаются и деформируются существенно меньше, чем баллоны пропана. Таким образом, доставка пропана становится в перспективе более опасной;
  • Доступность заправок – метановые заправки являются редкостью, их приходится специально искать, заправки с пропаном почти также часты, как бензиновые. При этом оборудование для сжимания, очистки и заправки метана существенно менее сложное, чем пропановое.

Таблица преимуществ и недостатков пропана и метана

Заправка газом может быть удобней, экономичней и функциональней, чем использование бензина, а окончательно определиться в выборе удобного газа можно при помощи следующей таблицы.

Фактор Пропан Метан
Стоимость ГБО Низкая Высокая
Относительно дешевле бензина 1,8-2 раза В 3 раза дешевле
Расход относительно бензина (на 10 литров) 11-11,5 литров 8-8,5 кубов
Вес среднего баллона 20-30 кг 60-125 кг
Запас топлива на средний комплект (километров хода) 600-1000 км 250-350 км
Взрывоопасная концентрация в воздухе 2,1% 4,4%
Вредное влияние на детали двигателя высокое низкое
Сжатие в баллоне 10-15 атмосфер 200-250 атмосфер
Экологическая безопасность Высокая Полная
Падение мощности двигателя относительно бензина 5% 20-30%
Октановое число 100 110
Доступность заправок Почти равно бензиновым По 1-2 на крупный город

Езда на не соответствующем топливе

Производитель не зря ориентирует всех, кто решился приобрести конкретное транспортное средство, какую марку бензина можно использовать. Если влить несоответствующее топливо, даже не сомневайтесь, авто поедет, только вряд ли транспортное средство будет вас радовать продолжительное время.

Если качество бензина не соответствует рекомендованному, выпускные клапаны достаточно быстро перегреваются и прогорают по причине разной температуры и продолжительности сгорания. Точно такой же отрицательный эффект будет наблюдаться, когда автомобилисты по собственной инициативе подвергнут зажигание неправильной регулировке. После прогорания изначально клапаны начинают троить, а впоследствии прекращают функционировать.

Отличия ГБО метанового от пропанового

Разница ГБО пропана и метана существенная. Оборудование для каждого из этих видов топлива требуется совершенно разное. Отличия касаются всех деталей, из которых состоит ГБО. Рассмотрим отличия в редукторах:

  1. Редуктор для пропана обладает толстыми стенками. Его структура состоит из двух камер, что позволяет сначала испаряться газу, а затем понижаться давлению.
  2. Редуктор с метанового оборудования имеет трёхкамерную структуру. Материал используется с повышенной прочностью, поскольку рабочее давление находится на высоком уровне.

Отличия затрагивают также и баллоны. Существуют цилиндрические и тороидальные баллоны.

  1. Метан можно заправлять только в цилиндрические баллоны. В таких конструкциях отсутствуют швы, что повышает их прочность. Метановые баллоны толстые соответственно, более тяжёлые.
  2. Пропан может заправляться в баллоны любой формы. Одним из отличий таких баллонов является их объём. Максимальный объём тороидальных конструкций находится на отметке 94 л., цилиндрические выпускаются до 200 л.

Расход газа и окупаемость

Отличия в расходе у метана и пропана несущественные. На 100 км. пропана уходит до 11 литров. Если устанавливать оборудование 5 поколения, то расход снижается до 9 литров. Метана на 100 км. уходит около 10 кубических метров. Если в автомобиле установлен большой баллон, то запас хода получается внушительным.

Окупаемость напрямую зависит от частоты и интенсивности использования автомобиля, дальности поездок. Метан стоит дешевле, но установка ГБО требует больших затрат. Пропан более дорогой, но и ГБО для него более доступное. Многие интернет-сервисы предлагают воспользоваться онлайн-калькуляторами. В соответствующие поля вводятся параметры, которые относятся к конкретной ситуации. На основании этой информации программа делает расчёты, и пользователь видит реальный срок окупаемости.

Безопасность использования

Вопрос безопасности является далеко не последним критерием, когда определяется что лучше: газобаллонное оборудование на метане или пропане. Каждый водитель должен думать о своей безопасности, своих пассажиров и окружающих его автовладельцев. Безопасность топлива определяется по нескольким критериям:

  1. Температура возгорания:
  • для паров бензина 170-250 градусов;
  • для пропана 365-450 градусов;
  • для метана 536-600 градусов.
  1. Давление в газовом баллоне определяет показатель взрывоопасности:
  • метан помещается в прочные баллоны, которые редко повреждаются во время ДТП, но они занимают много места и имеют большой вес;
  • пропан располагается в более лёгких баллонах, которые могут легко повредиться при ДТП, требуют постоянной проверки и контроля.
  1. Экологическая безопасность — критерий, который постоянно набирает актуальность и становится с каждым годом более значимым для мировой общественности:
  • метан является абсолютно безопасным для экологии;
  • пропан имеет высокий уровень экологической безопасности.

Получение

Прямогонные бензины

Долгое время бензин получали путём ректификации (перегонки) и отбора фракций нефти, выкипающих в определённых температурных пределах (до 100 °C — бензин I сорта, до 110 °C — бензин специальный, до 130 °C — бензин II сорта). Однако общим свойством этих бензинов является низкое октановое число. Вообще получение прямогонных бензинов с октановым числом выше 65 по моторному методу редко и возможно лишь из нефти Азербайджана, Средней Азии, Краснодарского края и Сахалина. Однако даже для дистиллятов из этих нефтей характерно резкое понижение октанового числа с ростом температуры конца отбора. Поэтому всю бензиновую фракцию (конец кипения 180 °C) используют редко. Для нефтей Урало-Волжского бассейна, Казахстана, а также месторождений Западной Сибири характерно преобладание нормальных парафиновых углеводородов, поэтому прямогонные бензины из них характеризуются низкими октановыми числами. Это побудило нефтепереработчиков ещё в 1930-е годы отбирать фракцию до 90-95 °C, чтобы в неё не попадал н-гептан, либо включать в отбор более тяжёлые фракции с их последующей чёткой ректификацией для удаления нормальных парафинов. Подобная «денормализация» прямогонных бензинов позволяет довести октановое число до 74-76 пунктов с существенным, однако, снижением выхода целевого продукта. В настоящее время из нефтей отгоняют фракцию НК-180 °C, которую потом вторично делят на фракции НК-62 °C или НК-85 °C. Эти последние дистилляты используют как компоненты товарных бензинов либо направляют на облагораживание (изомеризацию).

Алкил-бензин

Алкил-бензин представляет собой смесь изомеров углеводородов С7 и С8 и получается в процессе алкилирования изобутана бутиленами. Алкил-бензин широко используется как компонент автомобильных и авиационных бензинов и обладает высоким ОЧИМ 90-93. Алкил-бензин можно получать, вовлекая в сырьё алкилирования пропилен и амилены.

Лидером по производству алкил-бензина являются США (более 40 млн т/год). В России производится менее 1 млн т/год алкил-бензина, что объясняется отсутствием ресурсов бутан-бутиленовой фракции, которую получают в процессе каталитического крекинга, не получившего широкого распространения в России. Кроме того, сам процесс алкилирования в России технически устарел и стал малоэффективным, что повлекло сжигание избытка сырья.

В первой половине XX века для повышения октанового числа начали применять крекинг и риформинг, которые преобразуют линейные цепочки нормальных алканов — основной составляющей прямогонного бензина — в разветвлённые алканы и ароматические соединения соответственно.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector