Датчик холла что это

Содержание:

Как работает датчик Холла

Во время своих исследований в 1879 году физик Холл выявил такой эффект, что если в магнитном поле находится пластина, на которую подается напряжение (ток протекает через пластину), тогда электроны в указанной пластине начинают отклоняться. Такое отклонение происходит перпендикулярно по отношению к тому направлению, которое имеет магнитный поток.

Также направление этого отклонения происходит в зависимости от той полярности, которую имеет магнитное поле. Получается, электроны будут иметь разную плотность на разных сторонах пластины, создавая разные потенциалы. Обнаруженное явление получило название эффект Холла.

Другими словами, Холл поместил прямоугольную полупроводниковую пластину в магнитное поле и на узкие грани такого полупроводника подал ток. В результате на широких гранях появилось напряжение. Дальнейшее развитие технологий позволило создать на основе обнаруженного эффекта компактное устройство-датчик. Главным преимуществом датчиков подобного рода выступает то, что частота срабатывания устройства не смещает момент измерения. Выходной сигнал от такого устройства всегда устойчивый, без всплесков.

Простейший датчик состоит из:

  • постоянного магнита;
  • лопасти ротора;
  • магнитопроводов;
  • пластикового корпуса;
  • электронной микросхемы;
  • контактов;

Работа устройства построена на следующей схеме: через зазор осуществляется проход металлической лопасти ротора, что позволяет шунтировать магнитный поток. Результатом становится нулевой показатель индукции на микросхеме. Выходной сигнал по отношению к массе практически равняется показателю напряжения питания.

Датчик Холла в системе зажигания является аналоговым преобразователем, который непосредственно коммутирует питание. 

Среди недостатков стоит выделить чувствительность устройства к электромагнитным помехам, которые могут возникнуть в цепи. Также наличие электронной схемы в устройстве датчика несколько снижает его надежность.

Сейчас читают

Принцип действия и типы

Использование сенсоров в различных устройствах (в планшете, в частности) объясняется их способностью реагировать на изменения поля и отключаться при закрытии магнитной крышки чехла. Благодаря этому свойству они устанавливаются и в стиральных машинах, позволяя контролировать скорость вращения барабана. Если выразиться простым языком – здесь датчик Холла используется как тахометр.

Историческая справка

Чтобы понять принцип работы этого элемента, потребуется небольшой экскурс в историю. В 1879 году американский физик Холл открыл интересное явление, связанное с поведением проводника с током в магнитном поле. Проверка показала, что если через помещенную между магнитами медную пластину пропускать ток, то на ее боковых гранях появляется разность потенциалов. Возникает закономерный вопрос: как проверить это напряжение в домашних условиях?

Оказалось, что на практике его можно измерить мультиметром или любым другим прибором, имеющим соответствующие пределы. То же самое можно сделать любым подходящим тестером или подобным ему прибором.

Подключение измерителя подтверждает то, что движущиеся электроны под действием магнитного поля отклоняются в сторону (перпендикулярно направлению их движения).

Важно! Величина этого отклонения или разность потенциалов пропорциональна «мощности» магнитов и силе тока через пластину. На этом основании Холл заключил, что такой проводник – хорошее средство для измерения магнитного поля

На данном эффекте основана работа особого чувствительного элемента, называемого датчиком Холла. Разобравшись с тем, как он работает в каждом конкретном устройстве, можно быть уверенным в окончательном усвоении его принципа действия

На этом основании Холл заключил, что такой проводник – хорошее средство для измерения магнитного поля. На данном эффекте основана работа особого чувствительного элемента, называемого датчиком Холла. Разобравшись с тем, как он работает в каждом конкретном устройстве, можно быть уверенным в окончательном усвоении его принципа действия.

Классификация

Важно понимать, какие бывают датчики Холла, и по какому принципу их принято классифицировать. По особенностям работы и тому для чего он нужен или по назначению, датчик Холла может иметь различные исполнения

Одна из разновидностей – аналоговые приборы, вырабатывающие на выходе непрерывный сигнал.

В отличие от них цифровой элемент имеет только два дискретных состояния («ноль» и «единица»). Эта разновидность прибора может быть униполярной или иметь биполярный тип. Первая из них срабатывает при обнаружении поля любой полярности и отключается при его исчезновении. То есть униполярный цифровой сенсор реагирует только на отсутствие или наличие магнитной напряженности. Рассмотренные особенности каждого из подвидов также помогают понять, что это такое – датчик Холла.

Униполярные сенсоры переключаются в «единицу» лишь при достижении полем порогового уровня и не способны определять его наличие при слабых напряженностях. Указанное свойство – существенный минус таких приборов, заметно ограничивающий сферу их применения. Биполярный датчик срабатывает с учетом полярности магнитного поля, одна из которых включает его, а другая – выключает.

Условное графическое обозначение приборов этого класса приведено на фото ниже:

Линейные датчики Холла

О чего же зависит напряжение на гранях А и С? В основном от магнитного поля, создаваемым либо постоянным магнитом, либо электромагнитом; толщиной пластинки, а также силой тока, протекающего через саму пластинку. Благодаря этим параметрам с помощью датчика Холла были построены приборы, позволяющие замерять силу тока в проводнике, не касаясь самого проводоа, например, токовые клещи

а также приборы, с помощью которых можно замерять напряженность магнитного поля. Датчики Холла, используемые в этих приборах называют линейными, так как напряжение на датчике Холла прямо пропорционально измеряемым параметрам магнитного поля.

Линейные датчики, как я уже сказал, могут быть использованы в токовых клещах. Они позволяют измерять силу тока, начиная от 250 мА и до нескольких тысяч Ампер. Самым большим преимуществом в таких токовых клещах является отсутствие механического контакта с измеряемой цепью. Иными словами, токовые измерители на эффекте Холла намного безопаснее, чем измерители на основе шунта и амперметра, особенно при большой силе тока в цепи, которую нередко можно встретить в промышленных установках.

Принцип работы

Принцип эффекта Холла (он получил свое название в честь ученого, впервые обнаружившего его еще во второй половине XVIII века):

  • Если к полупроводниковой прямоугольной пластинке (в точках A и B) подключить источник постоянного напряжения, то электрический ток, протекающий через нее, будет представлять собой прямолинейное встречное движение отрицательно и положительно заряженных частиц (то есть, электронов и «дырок»).
  • Подсоединенный к точкам C и D воль (это значит, что напряжение отсутствует).

Если к пластине подносят постоянный магнит, то создаваемое им поле отклоняет движение заряженных частиц к внешним граням полупроводникового прямоугольника. В результате этого между точками C и D возникает разность потенциалов, то есть, наблюдается наличие напряжения (Vh). Что и фиксируется вольтметром.

Многие датчики в автомобилях работают именно на основе вышеописанного эффекта Холла. Естественно, напряжение на полупроводниковой пластинке минимально и его недостаточно для непосредственной подачи на бортовой компьютер. Современные технологии позволили создать на основе эффекта чип, состоящий из нескольких функциональных устройств:

  • непосредственно полупроводниковой пластинки Холла, которую изготавливают из арсенида галлия (GaAs), антимонида индия (InSb) или арсенида индия (InAs);
  • усилителя напряжения;
  • триггера Шмидта;
  • регулятора напряжения (для предотвращения выхода из строя при резких скачках напряжения бортовой сети);
  • выходного коммутирующего транзистора.

В результате при изменении интенсивности магнитного поля, воздействующего на полупроводниковую пластинку, на выходе устройства получают «понятные» бортовому компьютеру нули и единицы.

Технологически современные сенсоры Холла представляют собой микросхему с тремя выводами для:

  • подключения напряжения питания;
  • заземления;
  • снятия преобразованного датчиком сигнала.

Применение эффекта Холла на практике

Уже сказано (см. датчики Холла), что первые промышленные приложения эффекта Холла нашли себе путь в жизнь во второй половине XX века. Сегодня чуть более половины доли сегмента приходится на автомобильную промышленность. Точнее – передовые технологии в остальные области приходят оттуда. К примеру, модули ASIC и ASSP. Ведущая роль на десятые года XXI века принадлежит компании Asahi Kasei Microsystems (АКМ), поставляющей компасы для мобильных устройств на основе эффекта Холла. Среди промышленных гигантов отметим Micronas, Infineon, Allegro, Melexis. Среди датчиков магнитного поля основанные на эффекте Холла занимают почётную долю в 87%.

Часто датчик включается в состав микросхемы. Историческим предком является серия КМОП. На её основе выпущены интегрированные в кристалл датчики для измерения угла положения дроссельной заслонки, руля, скорости вращения распределительного и коленчатого вала. Широко значение технологии в работе вентильных двигателей, где по угловому положению ротора нужно коммутировать определённым образом обмотки. Измерением величины поля занимаются новейшие 3D-датчики, определяющие угловое и линейное положение системы магнитов. Прежде фиксировался просто факт наличия или отсутствия объекта в поле зрения. Это нужно для успешной конкуренции с магниторезистивной технологией.

Сегодня последним писком моды считаются программируемые конструкции, куда посредством кода заносятся разные функции. Датчики могут использоваться различными способами. К примеру, по взаимному положению чувствительной площадки и магнита различают режимы:

  1. Лобовой. В этом случае магнит находится прямо напротив датчика, удаляясь от него или приближаясь по прямой линии. Поле зависит квадратично от дистанции и закон выходного сигнала от дальности напоминает гиперболу. Такой режим называется униполярным, напряжённость не может поменять направление.
  2. Скольжение. В этом случае между чувствительной площадкой и магнитом имеется некий зазор. Эта координата остаётся неизменной. А магнит может скользить параллельно датчику по одной оси. Поле в этом случае не меняется, а зависимость выходного сигнала от координаты близка к гауссовому распределению. Направление напряжённости не меняется, посему режим также называют униполярным.
  3. Биполярное скольжение. Иногда требуется узнать, в какую именно сторону отклонился магнит. А не только определить дистанцию. В этом случае магнит используется подковообразный. Соответственно, полюсы вызывают отклики разной полярности. Что и дало название режиму.

Данные режимы периодически используются в комбинации. К примеру, когда требуется точно позиционировать магнит относительно датчики (при помощи исполнительных устройств), чувствительность оборудования повышается крутой характеристикой зависимости выходного сигнала от координат. Применяются магниты из трёх полос с чередованием полюсов. Крайний спуски графика получаются пологими, а центральный пик резко выражен. Чем достигается точное позиционирование системы.

Для усиления линий напряжённости, придания чётко выраженного направления применяются полюсные наконечники. Это куски металла из мягких ферромагнитных сплавов. По мере приближения магнита линии начинают стремиться к участку, образуя зазор, где остаются прямыми. Если туда поместить датчик Холла, чувствительность системы ощутимо повышается. С аналогичной целью применяются магниты смещения, остающиеся на месте и не вызывающие самостоятельное срабатывание. По мере приближения движущейся части плотность магнитного поля резко нарастает. Это упрощает срабатывание и уменьшает требования к чувствительности датчика.

Добавим, что по структуре выходного сигнала сенсоры бывают аналоговыми и цифровыми. В последнем случае система легко сопрягается с автоматикой, а измеренный сигнал уже не теряет точности, будучи переданным на обработку.

Датчик Холла что это — датчик положения на эффекте Холла

Датчик Холла что это такое? На самом деле это прибор измерения магнитного поля, который был разработан американским ученым Холлом в далеком 1879 году. Использование эффекта Холла и практическое его преимущество, это то, что прибор собранный на его принципе используется до сих пор во множестве современных устройств.

По первому впечатлению конструкция датчика может показаться довольно сложной, хотя на самом деле это не так. Поэтому мы вначале составим себе представление — датчик Холла что это и как он работает. Как уже говорилось выше, устройство создано с использованием эффекта Холла, принцип действия которого сводится к следующему:

Немного теории

В случае воздействия поперечным магнитным полем на какой-либо полупроводниковый прибор, параллельно которого проходит электроток, то в этом случае образуется электро движущаяся сила Холла (ЭДС). Одновременно с этим показатель действующего напряжения поменяется на значение в пределах от 0.4v до 3v.

Исходя из этого можно понять, что данный прибор является достаточно легким к пониманию его принципа работы. Чтобы правильно усвоить приведенную теорию, необходимо для лучшего понимания показать конкретный пример. Для построения эффекта Холла потребуется небольшая по толщине медная полоска в качестве полупроводника, аккумулятор, магнит без подвода электроэнергии, ну и естественно отрезки проводов.

Далее ток подается между двух плоскостей полупроводника. К остальным двум плоскостям прикрепляются концы проводов. В это же время нужно будет поднести к полоске магнит. Вот таким образом получился магнитоэлектрический датчик Холла.

Существует метод его создания в импульсном варианте. Чтобы это сделать, нужно расположить экран с зазорами между медной полоской и постоянным магнитом, с возможностью его перемещения. Такая конструкция и особенность применения зазоров в ней типична во всех устройствах Холла.

Специфика работы и задачи генераторов Холла

Использование на практике электродвижущей силы Холла после ее открытия стало возможно только спустя многие годы. Большой разрыв между открытием и практическим применением, который составлял десятки лет, обусловливалось тем, что полупроводниковые элементы имеющие необходимые свойства, научились и стали изготавливать намного позже появления эффекта Холла.

Как работает датчик Холла

Первые экземпляры устройств были очень габаритными и мало эффективными. Но с появлением микроэлектроники датчики Холла приобрели совсем иное развитие. В особенности, когда появились на свет микросхемы, именно они стали главными объектами применения их в генераторах Холла. Используя эту возможность, промышленность наладила производство датчиков в миниатюрном исполнении.

Причем эти приборы имеют несколько вариаций: линейные — датчики тока, датчики реагирующие на вибрацию, датчики пространственного положения, расходомер и т.д. Другой вариант: логические типы прибора — датчики движения, датчики для определения числа оборотов, датчики импульсных сигналов и прочие.

Датчик Холла начали применять для измерения величины тока, мощности, скорости движения и расстояния. Кстати, в любом оптическом приводе настольного компьютера или ноутбука имеется такой датчик. Одним из основных направлений применения этого устройства получила автомобильная промышленность.

Неоспоримые достоинства датчика Холла – это его доступная цена, простота в использовании, долгий срок службы. Гарантированная надежность прибора заключается в его конструкции, в которой отсутствуют трущиеся между собой детали.

Особенности датчика

Принцип работы

Датчик Холла в своей основе имеет эффект, описанный выше, но его применение отличается некоторыми нюансами. Внутри прибора происходит следующее: на полупроводник под электрическим напряжением оказывает воздействие магнитное поле, причём оно пересекает его поперёк. Результатом этого явления становится электродвижущая сила.

Внимание! При возникновении электродвижущей силы напряжение меняется в диапазоне от 0,4 до 3 В.

Чтобы лучше понять принцип работы датчика Холла рассмотрим конкретный пример. Во-первых, для создания вышеописанного эффекта нужна тонкая пластина, которая будет играть роль полупроводника. Во-вторых, необходим источник электрического тока. Без провода и постоянного магнита также обойтись не получится.

Ток необходимо пустить между двумя сторонам пластины. Причём стороны должны быть параллельны друг другу. Провода нужно закрепить с двух других сторон. Магнит должен располагаться неподалёку от полупроводника. Если всё это будет выполнено в точности, то возникнет эффект Холла. По факту описанная конструкция представляет собой генератор.

При необходимости можно сделать так, чтобы это устройство работало в импульсном режиме. Но для этого нужно между пластиной и магнитом установить экран. Конструкция экрана должна иметь щели.

Для чего нужен щелевой датчик Холла в автомобилях

Главной задачей датчика Холла является изменение напряжения на выходе при перемене состояния магнитного поля. Малейшая неисправность может привести инжектор в нерабочее состояние.

Эффект Холла помогает добиться коммутации между сигнальными контактами, отвечающими за скорость, позиционирование и передачу сигналов. Простейшим считается именно аналоговый датчик. Также существует цифровой аналог, который имеет более сложную конструкцию.

Аналоговый датчик Холла играет роль преобразователя, который должен коммутировать питание для системы зажигания. Тем не менее можно найти конструкции, которые используют целые группы датчиков. Но они находятся на определённом отдалении от магнитов.

В большинстве случаев датчик Холла идёт в комплекте с сердечником. Также к устройству примыкает постоянный магнит. Именно он оказывает необходимое влияние на полупроводниковый кристалл.

В тех автомобилях, в которых установлен цифровой датчик Холла возможно функционирование в двух режимах защиты. Первый активирует защитную схему, а второй отключает. Но такое устройство в большинстве случаев называется распределителем или переключателем. Хотя в основе лежит всё тот же эффект. Подобные аппараты устанавливают на свои машины такие компании, как:

  • Opel,
  • AUDI,
  • BYD Flyer,
  • Volkswagen Golf,
  • Suzuki,
  • Passat,
  • BMW.

Довольно часто датчик Холла можно увидеть во многих бытовых устройствах. К примеру, тяжело себе представить компьютерный привод без него. Также нельзя не вспомнить о системах наблюдения и целом ряде мотоциклов.

Внимание! Для повышения точности работы датчик Холла устанавливают в клавиатуры и джойстики.

Достоинства устройства и его применение

Датчик Холла обладает целым рядом преимуществ, которые делают его незаменимым в современном оборудовании:

  • Устройство позволяет увеличить производительность мотора.
  • Без него невозможна точная работа тахометра и спидометра,
  • Датчик повышает безопасность автомобиля.

Датчик Холла можно использовать по-разному. Но в большинстве случаев автомобильные конструкторы применяют его для контроля скорости. Точнее, он осуществляет мониторинг передаточных колёс и валов. Также он контролирует их скорость вращения. Это позволяет обеспечить быстрый запуск двигателя, работающего на основе принципа внутреннего сгорания.

Также датчик Холла может обеспечить запуск антиблокировочной тормозной системы, а это, в свою очередь, напрямую влияет на безопасность на дороге. О тахометре в таком случае и говорить не приходится.

Но возможно и другое применение. Отличным примером в данном контексте будут бесщёточные электрические двигатели, работающие благодаря действию постоянного тока. Благодаря датчику Холла в таких устройствах определяется место, где находится постоянный магнит.

Как видите, у датчика Холла может быть множество применений. Сфера использования напрямую зависит от решения производителя. Допустим, конструкцию с двумя расположенными друг напротив друга магнитами можно использовать для того, чтобы регулировать скорость работы дискового накопителя.

Проверка датчик Холла

На сегодня существует несколько наиболее распространенных методов проверки ДХ. Перечислим наиболее популярные и простые для домашнего применения:

  • создание имитации наличия контроллера;
  • проверка мультиметром, тестером;
  • проверка заменой на заведомо рабочий датчик;
  • на сопротивление.
  • Проверка датчика Холла осциллографом

Рассмотрим подробнее каждый из способов.

Создание имитации ДХ

Этот способ наиболее простой и подходит, если питание на зажигание поступает, а искра не появляется. Для этого необходимо снять с трамблера трехштекерную колодку. Затем включается зажигание и замыкается куском проводника второй и третий контакты – «минуса» и сигнал. Если во время таких манипуляций на центральном проводе катушки зажигания будет искра, то необходимо заменить датчик, этот вышел из строя.
Стоит отметить, что для выявления наличия искры высоковольтный провод необходимо зафиксировать возле массы.

Проверка исправности мультиметром


Схема подключения

Это наиболее простой и распространенный способ диагностики для домашнего использования. Для этого переключатель мультиметра нужно перевести в положение вольтметр, измерение напряжения. Затем при помощи щупов померить напряжение на выходе датчика. На исправном датчике показатель напряжения должен быть в пределах 0.4 – 11 В.

Замена на исправный

Способ простой и не требует от автовладельцев наличия знания в области электрики. Можно приобрести новый в магазине или попросить на время у знакомых, главное, чтобы датчики были идентичны. Если машина заработала нормально и пропали признаки неисправности, значит Ваш датчик пришел в негодность.

На наличие сопротивления


Схема

Также относится к очень распространенному методу, но немного посложнее. Потребуется соорудить простенький прибор. Для него нужно взять резистор сопротивлением 1 кОм, светодиод и немного гибкого провода. К одной ножке светодиода припаивается провод удобной для работы длины, на вторую резистор, а к нему такой же кусок провода.

Затем отсоединяется крышка распределителя, отключается трамблер и штекерная коробка. Следующий шаг – проверка электрической цепи. Для этого щупы мультиметра подключаются к клемме 1 и 3 и поворачивается ключ зажигания. Если все работает нормально, то на дисплее мультиметра должно быть значение 10 – 12 вольт.

Затем на те же клеммы подключается собранный ранее прибор. Если полярность правильная – загорится светодиод. Если он не светится, нужно провода переставить на местами на контактах.

Дальнейшие действия:

  • провод первой клеммы оставляем на месте;
  • провод третьей клеммы перебрасываем на вторую;
  • стартером прокручиваем распредвал.

При проворачивании вала светодиод должен замигать. Если этого не произошло, значит датчик Холла неисправен. Стоит отметить, что проверка датчиков проходит одинаково на любых автомобилях, как отечественных производителей, так и зарубежных. Разница может заключаться только в расположении деталей под капотом.

Проверка ДХ осциллографом

Провести диагностику датчика Холла можно при помощи осциллографа, снимаем осциллограмму напряжения и если есть перебои или вообще отсутствуют импульсы, бракуем ДХ. Но этот метод требует наличие специализированного оборудования которое не целесообразно покупать для домашнего использования.

Проверка датчика Холла на таких автомобилях как ВАЗ 2106, 2107, 2109, а так же Пассат б3 и Ауди 80 абсолютно одинакова.

Признаки, симптомы и причины неисправности датчиков в автомобиле.

Доброго времени суток уважаемые читатели, в этой статье мы разберем многие причины но в основном симптомы неисправности датчиков автомобиля. Помните, что прежде чем ехать в сто и паниковать стоит потратить немного времени и постараться самому найти причину неисправности и сэкономить средства.

Признаки неисправности датчика ДПДЗ:

— на холостом ходу возможны высокие обороты, это наиболее характерный признак; — заметное снижение мощности двигателя и ухудшение приемистости; — при нажатии акселератора рывки, провалы и подергивания; — плавающие обороты на холостом ходу; — при переключении передач самопроизвольно выключается двигатель; — возможны перегревы; — детонация. (лично у меня симптомами были высокие обороты, отсутствие возможности тормозить двигателем, рывки, понижение мощности и соответственно повышенный расход бензина).

на фото видно сильно изношенные дорожки

Причинами неисправности датчика ДПДЗ могут быть: — окисление контактов — помочь в этом случае можно, надо взять специальную жидкость WD и ватным тампоном почистить все контакты в колодке и под крышкой; — изношенные подложки датчиков в том случае, если в их конструкции было предусмотрено напыление резистивного слоя; — выходит из строя подвижный контакт — возможна поломка какого-нибудь наконечника этого контакта, тогда образуется задир и другие наконечники тоже выходят из строя; — дроссельная заслонка на холостом ходу до конца не закрывается — в этом случае можно немножко подпилить напильником посадочные места датчика и заслонка должна будет закрыться.

Датчик дпдз выходит из строя редко, однако рядовой автовладелец не сможет диагностировать выход его из строя, так же некоторые не знают где находится датчик. Датчик располагается напротив дроссельной заслонки.

Ошибка check выскакивает не всегда.

Признаки неисправности клапана холостого хода:

— неустойчивые обороты двигателя на холостом ходу; — самопроизвольное повышение или снижение оборотов двигателя; — остановка работы двигателя при выключении передачи; — отсутствие повышенных оборотов при запуске холодного двигателя; — снижение оборотов холостого хода двигателя при включении нагрузки (фары, печка и т.д).

К лапан холостого хода в таком состоянии нормально функционировать не сможет.

Ошибка check выскакивает не всегда.

Лучшая профилактика клапана холостого хода это периодически снимать и чистить клапан холостого хода, обычно это делают осенью и весной. Расположен клапан возле дроссельной заслонки.

Признаки неисправности датчика ДМРВ:

Признаки неисправности датчика дмрв или абсолютного давления во впускном характеризуются: — До 70 градусов машина более менее работает хорошо, после 70 начинается нестабильный холостой ход; — Провалы при разгоне и подтраивания; — Машина иногда глохнет на холостом ходу при резком нажатии педали газа; — Повышенный расход; — Неприятный запах выхлопа; — Хлопки в глушителе при работе и иногда хлопки во впускном коллекторе. (неправильный угол опережения зажигания из-за неисправного датчика)

Датчик расхода воздуха очень чувствительный и чистить его самому не рекомендуется, чем чаще вы меняете фильтр тем дольше он вам прослужит.

Ошибка check выскакивает только тогда, когда датчик дмрв перестал работать окончательно, а давать неверные показания может долгое время.

Проверить дмрв или датчик массового расхода воздуха можно имея под рукой мультиметр или диагностический сканер.

Признаки неисправности датчика скорости:

спидометр не работает или дает неверные показания; — нестабильный холостой ход; — повышенный расход горючего; — мотор перестает развивать полную мощность. — стрелка указателя топлива почти мгновенно реагирует на колебания уровня топлива в баке, т.к. компьютер думает, что автомобиль не движется, и меньше «сглаживает» показания датчика; — одометр не наматывает пробег; датчик в акпп — АКПП при переключении скорости сбрасывается сама на нейтралку, или самопроизвольно нелогично переключается; — машина перестает реагировать на педаль газа и идёт накатом; — при городском движении при наборе скорости коробка резко повышает обороты и не ускоряется, не реагирует на другие режимы 2 и 1. Она как бы едет только на 1 скорости но не тормозит двигателем.

Достоинства и недостатки

Плюсы:

  • универсальность (одновременно определяют положение, направление и так далее);
  • износостойкость. Нет движущихся узлов, это твердотельные прочные устройства, что обеспечивает чрезвычайную долговечность;
  • почти полная независимость от необходимости обслуживания;
  • датчик тока на эффекте Холла работает при вибрациях, в пыльных, влажных, агрессивных условиях, при высоких температурах.

Минусы:

  • у стандартных приборов максимум расстояния до замеряемого тока около 10 см. Но все зависит от магнита: если он мощный и создает широкое поле, то дистанция увеличивается;
  • характерная «болезнь» — точность, поскольку есть зависимость от магнитного поля, и другие внешние подобные явления могут вносить искажения. Это же касается высоких температур, так как они меняют сопротивление проводников, соответственно, и подвижность носителей заряда, но тут страдает чувствительность. Впрочем, такое встречается редко или влияние ничтожное, в целом не особо влияет на работу.

Применение датчиков Холла

Самое распространенное применение датчика Холла в быту – бесконтактные системы зажигания автомобиля. Их преимущество – отсутствие механических контактных групп. Это означает отсутствие износа, подгорания контактов, риска механической поломки.

Система распределения содержит пластину с выступами, приводимую во вращение от коленвала двигателя, постоянный магнит и собственно датчик Холла. При вращении пластины выступы в строго определенный момент, определяемый положением коленвала, попадают в зазор между датчиком и магнитом, изменяя параметры магнитного поля. Датчик формирует импульсы, синхронизированные с вращением коленчатого вала, которые регулируют подачу напряжения на высоковольтную катушку в необходимые моменты времени. Также датчики магнитного поля в автомобиле служат для распознавания положения коленвала.

Другое использование магниточувствительных датчиков – определение положения роторов электродвигателей. Релейный элемент крепится на статоре мотора и срабатывает при прохождении полюса.   На этом принципе можно построить счетчик оборотов или измеритель частоты вращения.

Устройства, построенные на эффекте Холла, применяются в ноутбуках или мобильных устройствах – как индикатор закрытого положения крышки. При срабатывании датчика компьютер переходит в режим сна или выключается. А в смартфонах одна из функций датчика, реагирующего на магнитное поле Земли – организация работы электронного компаса.

Аналоговые датчики Холла применяются в измерительных приборах – там, где надо оценить уровень магнитного поля. Незаменимы они при бесконтактном измерении силы тока в проводнике. Как известно, при прохождении тока по проводнику, вокруг него возникает магнитное поле. Его напряженность зависит от силы тока. Если ток переменный, то поле можно измерить другими способами (например, трансформатором тока), а вот при постоянном токе без датчика Холла не обойтись. На таком принципе работают токоизмерительные клещи постоянного тока.

Самое же экзотическое применение эффекта Холла – построение на его принципе двигателей ионных ракет.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector