Рулевое управление: особенности,виды,устройство,фото,видео

Устройство и принцип работы системы AFS

. Конструкция достаточно простая и отличается неплохим КПД передачи крутящего момента руля (устанавливают на авто с независимой подвеской). Основой служит рулевая рейки с шестерней, сама же шестерня устанавливается на вал и постоянно находится в сцеплении с рейкой.

Вращая руль, рейка за счет шестеренки перемещается в горизонтальном положении влево или вправо. Тяги, прикрепленные к рейке, так же перемещаются в соответствии с поворотом руля, тем самым передавая усилия на колеса и поворачивая их по сторонам. Основные плюсы в самом строении, меньше тяг и шарниров, компактность, невысокая цена обслуживания, простота конструкции и надежность. Есть и минусы, редуктор такого механизма весьма чувствительный к неровностям на дороге, за чет чего любой удар колеса передается на руль.

Второй вид механизма –

. Считается самым старым видом среди существующих вариантов. Чаще всего встречается на классических, отечественных автомобилях, а так же на машинах с повышенной проходимостью. Как правило, подвеска таких автомобилей зависимая. От предыдущего вида червячный механизм отличается наличием червячного ролика, вместо шестерни, картера, а так же рулевой сошки.

Последний из видов рулевого управления –

. В отличие от двух предыдущих видов, механизм соединяется с помощью гайки и шариков специального винта. Как показывает практика, износ такого механизма минимальный, а детали ломаются очень редко.

Чаще всего винтовой механизм применяют на грузовых автомобилях, автобусах и легковых автомобилях представительского класса с повышенным комфортом и безопасностью. По принципу работы винтовой подвид работает так же, как и червячный, передавая момент прокручивания руля через червячную передачу.

Соответственно с зашитой логикой и программой блоки управления создают управление исполнительными механизмами как сервопривод рулевого механизма, сервопривод колес и электромагнитное сцепление возле руля. Рассмотрим механизмы и их назначение по отдельности. Благодаря сервоприводу рулевого механизма колеса повернутся на определенный угол, как правило, на каждое колесо инженеры установили свой сервопривод.

Для симуляции реальности поворота руля с усилием используется сервопривод руля, создается ощущения скольжения колес по дороге. Одним из важных элементов безопасности является электромагнитное сцепление. Во время подачи электроэнергии сцепление будет в разомкнутом состоянии, а рулевое управление будет проходить по проводам.

Принцип работы не такой то и сложный, когда водитель начинает вращать руль, датчик поворота руля считывает угол изменения положения и передает информацию на блоки управления. Далее идут расчеты, насколько нужно повернуть передние колеса. Таким образом, сервопривод перемещает рулевую рейку и обеспечивает поворот колес в соответствии с рассчитанным углом.

В это же время, рассчитав угол поворота, блок управления посылает обратно на сервопривод руля сигнал и имитирует усилие поворота колес. Как видим принцип работы механизма не сложный, но все же требует большой точности механизмов и их согласованности. Кроме этого стоит следить за исправностью всего механизма.

Самая главная функций эпициклической шестерни — изменение передаточного отношение, которое может достигать 1:10 при максимальной скорости вращения в определенном направлении. При этом руль становится острым, а углы поворота влево и вправо до упора уменьшаются, благодаря чему достигается больший комфорт в управлении.

При росте скорости движения, электродвигатель вращается медленней и передаточное отношение рулевого механизма уменьшается. В конечном итоге, электродвигатель прекращает свое вращение, это происходит на скорости в 180-200 км/ч, а усилие от рулевого колеса передает напрямую на рулевой механизм.

Если вдруг при повороте, будет зафиксирована избыточная поворачеваемость (потеря сцепления задних колес с поверхностью), то система динамической стабилизации DSC автоматически корректирует углы повороты передних колес. Также система стабилизирует движения автомобиля на скользкой дороге или при торможении.

Дальнейшее включение электромотора осуществляется с набором скорости, при этом его ротор вращается в обратную сторону. Величина передаточного числа равняется 1:20, многократно снижается острота руля и возрастает величина его оборотов, что позволяет в разы увеличить управляемость транспортным средством во время езды при высоком скоростном режиме.

Напоследок отметим, что система AFS постоянно находится в рабочем состоянии. Отключить ее невозможно.

Особенности узла и конструкция

На автомобилях используется кинематический способ смены направления движения, подразумевающий, что осуществление поворота происходит за счет смены положения управляемых колес. Обычно управляемой является передняя ось, хотя существуют и авто с так называемой системой подруливания. Особенность работы в таких авто заключается в том, что колеса задней оси тоже поворачиваются при изменении направления, хоть и на меньший угол. Но пока эта система широкого распространения не получила.

Помимо кинематического способа на технике используется еще и силовой. Особенность его заключается в том, что для совершения поворота колеса одной стороны притормаживаются, в то время, как с другой стороны они продолжают двигаться с прежней скоростью. И хоть этот способ изменения направления на легковых авто распространения не получил, на них он все же используется, но в несколько ином качестве – как система курсовой устойчивости.

Этот узел автомобиля состоит из трех основных элементов:

  • рулевая колонка;
  • рулевой механизм;
  • привод (система тяг и рычагов);

Рулевой узел У каждой составляющей – своя задача.

Типичные неисправности

В “классиках” неисправности рулевой характеризуются не только потерей управления, но и люфтами, а также различными стуками и посторонними звуками. Зачастую стучит колонка, а если точнее, то одна из изношенных крестовин. Ранее умельцы выпрессовывали деталь и заменяли ее. Сегодня таким больше не занимаются. Услышали звук – полная замена вместе с карданом.

Если рулевой механизм стучит в нескольких местах, то здесь также необходима замена всего управления, в том числе и редуктора. Если выявлены повреждения пыльников, тогда их просто нужно заменить на новые. Некоторые владельцы этих автомобилей не обслуживают эти механизмы долгие годы, а только контролируют время от времени состояние пальцев.

Среди более серьезных поломок – деформация тяг или рычагов. Это случается при неаккуратном вождении на высоких скоростях. Порой трудно выяснить, менять рулевую или не менять. Поврежденную тягу порой заменить довольно трудно. Ремонт рулевого механизма сводится к замене поврежденных деталей.

Если слышен хруст при повороте, значит, необходимо искать поврежденный подшипник. Он может находиться где угодно. Замена считается сложной процедурой, разобрать рулевую колонку довольно трудно. И если редуктор можно заменить своими руками, то ремонтировать рулевую лучше у специалистов.

Усилитель


Элементы гидроусилителя рулевого управления автомобиля Волга ГАЗ 31105

Усилитель используется для облегчения управления. Благодаря усилителю, удается достичь большей точности управления, увеличить скорость передачи движения от руля к колесу. Автомобиль с усилителем управляется проще, легче, быстрее. Усилитель может быть электрическим, пневматическим или гидравлическим. В большинстве современных автомобилей используется гидравлический усилитель, получающий питание от электродвигателя.

Гидроусилитель состоит из поворотного клапана и лопастного насоса. За счет движения лопастного насоса гидравлическая энергия поступает в рулевой механизм. Насос работает за счет электрического двигателя автомобиля. Он перемещает гидравлическую жидкость. Величина давления регулируется при помощи встроенного в насос предохранительного клапана. Нетрудно догадаться, что чем больше скорость движения двигателя, тем большее количество жидкости поступает в насосный механизм.

Стук в редукторе

Стук в машине неприятная и раздражающая вещь, и причиной источника шума может быть несколько, поэтому порой сложно определить первоисточник проблемы. Если Вы слышите четкий стук или щелчки в редукторе при повороте руля, то попробуйте долить туда трансмиссионного масла, возможно, его уровень совсем упал. Хорошо будет полностью поменять масло. Проделывать эту операцию стоит раз в 2 года или на 30-40 тыс. км. Уровень проверяется при помощи любого чистого стержня вставленного до упора. Редуктор для начала нужно протереть, во избежание попадания грязи. Далее открутите крышку масляного канала и откачайте шприцем старое масло. Для замены подойдет любое трансмиссионное масло. Закачиваем его до отметки в 15-20 мм от горлышка. Теперь стук должен уйти. Если стук остался, это связанно с износом червя или подшипника рулевого редуктора, которые придется заменить.

ГУР или ЭУР: преимущества и недостатки усилителей рулевого управления

Конструкция системы AFS объединяет планетарный редуктор и систему управления.

Планетарный редуктор служит для изменения скорости вращения рулевого вала. Он устанавливается на рулевом валу. Планетарный редуктор включает солнечную шестерню, блок сателлитов и коронную (эпициклическую) шестерню. На входе рулевой вал соединен с солнечной шестерней, на выходе – с блоком сателлитов.

Эпициклическая шестерня имеет возможность вращения. При неподвижной шестерне передаточное число планетарного редуктора равно единице и рулевой вал передает вращение напрямую. Вращение эпициклической шестерни в одну или другую сторону позволяет увеличить или уменьшить передаточное число планетарной передачи, чем достигается изменение передаточного отношения рулевого механизма. Вращение шестерни обеспечивает электродвигатель, соединенный с ее внешней стороной посредством червячной передачи.

Для реализации функций системы активного рулевого управления создана система управления. Электронная система управления включает входные датчики, электронный блок управления и исполнительные устройства.

Входные датчики предназначены для измерения параметров работы системы и преобразования их в электрические сигналы. Система AFS в своей работе использует датчики положения электродвигателя, суммарного угла поворота, угла поворота рулевого колеса, датчики системы динамической стабилизации (скорости вращения автомобиля вокруг вертикальной оси и вертикального ускорения). Датчик суммарного угла поворота рулевого механизма может не устанавливаться, в этом случае угол рассчитывается виртуально на основании сигналов других датчиков.

Электронный блок управления принимает сигналы от датчиков, обрабатывает их и в соответствии с заложенным алгоритмом формирует управляющие воздействия на исполнительные устройства. Электронный блок управления имеет соединение и осуществляет взаимодействие с другими системами автомобиля: Servotronic, динамической стабилизации DSC, управления двигателем, доступа в автомобиль.

В роли исполнительного механизма системы AFS выступает электродвигатель. Он обеспечивает вращение эпициклической шестерни планетарного редуктора. Электродвигатель оборудован аварийным электромагнитным фиксатором, блокирующим червячную передачу. В исходном положении передача заблокирована. При подаче тока на электродвигатель, срабатывает электромагнит, и фиксатор, преодолевая усилие пружины, освобождает ротор электродвигателя. При возникновении неисправности в системе AFS, прекращается подача тока на электродвигатель, фиксатор блокирует червячную передачу.

Возникновение неисправностей в системе сопровождается срабатыванием сигнальной лампы на панели приборов. При этом на информационном дисплее появляется сообщение системы самодиагностики.

Рулевая колонка

Выполняет передачу вращательного усилия, которое создает водитель для изменения направления. Состоит она из рулевого колеса, располагаемого в салоне (на него и воздействует водитель, вращая его). Оно жестко посажено на вал колонки. В устройстве этой части рулевого управления очень часто используется вал, разделенный на несколько частей, соединенных между собой карданными шарнирами.

Такая конструкция сделана не просто так. Во-первых, это позволяет менять угол положения рулевого колеса относительно механизма, смещать его в определенную сторону, что нередко необходимо при компоновке составных частей авто. В дополнение такая конструкция позволяет повысить комфортабельность салона – водитель может менять положение рулевого колеса по вылету и наклону, обеспечивая максимально удобное его положение.

Во-вторых, составная рулевая колонка имеет свойство «ломаться» в случае ДТП, снижая вероятность травмирования водителя. Суть такова – при фронтальном ударе двигатель может сместиться назад и толкнуть рулевой механизм. Если бы вал колонки был цельным, изменение положения механизма привело бы к выходу вала с рулевым колесом в салон. В случае же со составной колонкой, перемещение механизма будет сопровождаться всего лишь изменением угла одной составляющей вала относительно второй, а сама колонка остается неподвижной.

Различные используемые схемы

Тип рулевого управления в основном определяется способом преобразования в рулевом механизме. Выделяются три основных варианта:

  1. Реечное управление встречается наиболее часто и практически на всех легковых автомобилях. В силу своей конфигурации оно хорошо компонуется и обеспечивает высокую точность управления. Возможно использование переменного передаточного числа в зависимости от угла поворота (прогрессивная характеристика). Удобно сочетается со всеми видами усилителей и демпферов. Они же максимально парируют основной недостаток в виде излишней прозрачности – удары могут передаваться на руки водителя с большой травмирующей силой. Конструкция также минимизирует состав набора рулевых тяг и наконечников.
  2. Рулевое управление типа «червяк-глобоидальный ролик». Повсеместно применялось в прошлом, пока не было вытеснено реечным механизмом. Отличалось компактностью, хорошим блокированием обратных ударов и высокой прочностью. Вместе с тем создавало трудности с точностью управления и стабильностью характеристик во времени. Сохраняется на грузовиках и вездеходах.
  3. Механизм типа «винт-шариковая гайка» характеризуется пониженным трением и способностью выдерживать высокие нагрузки. Представляет собой значительно усовершенствованный предыдущий вариант, но работает гораздо лучше и широко используется на дорогих и тяжёлых автомобилях престижного класса, а также на больших грузовиках.

Все данные механизмы снабжаются усилителями. Они в своей работе могут использовать электрические, гидравлические и смешанные принципы.

  1. Электрический усилитель руля (ЭУР) находит всё большее применение на легковых автомобилях. Здесь важны такие его свойства, как компактность, быстродействие и точность. В последнее время стало особенно важным лёгкое подключение рулевого управления через ЭУР к компьютерам автомобиля, осуществляющим помощь водителю с элементами полностью автономного управления. Машины уже умеют самостоятельно парковаться, отслеживать разметку и следовать потоку без вмешательства человека. Через изменение усилия на руле также возможно передавать водителю информацию о его ошибках и рекомендации.
  2. Гидроусилитель руля (ГУР) был самым массовым и до сих пор ещё применяется по разным причинам, хотя в целом уступает по функциональности электрическим. Отличается высокой мощностью благодаря прямому приводу от двигателя и надёжностью, поскольку применялся давно и широко. Недостатки связаны с наличием текучей жидкости и многочисленных уплотнений. Управлять им от компьютеров сложно, но один выход всё же есть.
  3. Электрогидравлический гибридный усилитель (ЭГУР) частично избавляет от этого недостатка, поскольку в нём рабочее давление создаётся электрическим насосом, которым достаточно легко управлять. Но некоторая инертность всё же остаётся, также сохраняются все недостатки гидравлики.

Усовершенствование рулевых механизмов идёт по пути максимального внедрения в них принципов автоматического управления. Существуют системы типа AFS, где по команде компьютера можно оперативно менять суммарное передаточное число рулевого редуктора. Для этого используется дополнительная передача планетарного типа, где венец можно вращать отдельным электродвигателем. Электромоторы могут выполнять и иные функции, вплоть до полного устранения жёсткой связи между рулевым колесом и управляемыми колёсами. Подобно тому, как электричество и гидравлика берут на себя перемещение управляющих элементов в авиации и тяжёлой грузовой технике. Уровень надёжности и дублирование вполне это позволяют. При этом руление становится полностью адаптивным и помощь водителю максимальна.

Основные типы приводов и рулевых механизмов

Рулевой механизм.

предназначен для поворота управляемых колес с небольшим усилием на рулевом колесе. Что достигается за счет увеличения передаточного числа рулевого механизма. Однако передаточное число ограничивается количеством оборотов рулевого колеса. Если выбрать передаточное число с количеством оборотов рулевого колеса больше 2-3, то существенно увеличивается время поворотаавтомобиля, что является недопустимым в условиях движения. В следствии этого производят огрничение передаточного числа в рулевых механизмах в пределах 20-30, а для уменьшения усилия на рулевом колесе в рулевой механизм или привод встраивают усилитель.

Ограничение передаточного числа рулевого механизма также связано со свойством обратимости (способностью передавать обратное вращение через механизм на рулевое колесо). При больших передаточных числах увеличивается трение в зацеплениях механизма, свойство обратимости пропадает и самовозврат управляемых колес после поворота в прямолинейное положение оказывается невозможным.

Рулевые механизмы в зависимости от типа рулевой передачи разделяют на:

  • • червячные,
  • • винтовые,

• шестеренчатые.

Рулевой механизм с передачей типа червяк — ролик имеет в качестве ведущего звена червяк, который закреплен на рулевом валу, а ролик установлен на роликовом подшипнике на одном валу с сошкой. Для полного зацепление при большом угле поворота червяка, нарезку червяка выполняют по дуге окружности — глобоиде. Такой червяк называют глобоидным.

В винтовом механизме вращение винта, связанного с рулевым валом, передается гайке, заканчивающейся рейкой, зацепленной с зубчатым сектором, а сектор установлен на одном валу с сошкой. Данный рулевой механизм образован рулевой передачей типа винт-гайка-сектор.

В шестеренчатых рулевых механизмах рулевая передача образуется цилиндрическими или коническими шестернями, к ним же относят передачу типа шестерня-рейка. В последних цилиндрическая шестерня связана с рулевым валом, а рейка, зацепленная с зубьями шестерни, выполняет роль поперечной тяги. Реечные передачи и передачи типа червяк-ролик преимущественно применяют на легковых автомобилях, так как обеспечивают сравнительно небольшое передаточное число.

Рулевой привод.

Конструкции рулевого привода различают по расположению рычагов и тяг, составляющих рулевую трапецию, по отношению к передней оси. Если рулевая трапеция находится впереди передней оси, то конструкция рулевого привода называется передней рулевой трапецией, при заднем расположении — задней трапецией. Большое влияние на конструктивное исполнение и схему рулевой трапеции оказывает конструкция подвески передних колес.

При зависимой подвеске рулевой привод имеет более простую конструкцию, так как состоит из минимума деталей. Поперечная рулевая тяга в этом случае сделана цельной, а сошка качается в плоскости, параллельной продольной оси автомобиля. Можно сделать привод и с сошкой, качающейся в плоскости, параллельной переднему мосту. В следствии этого продольная тяга будет отсутствовать, а усилие от сошки передается прямо на две поперечные тяги, связанные с цапфами колес.

При независимой подвеске передних колес схема рулевого привода конструктивно сложнее. В данном случае появляются дополнительные детали привода, которых нет в схеме с зависимой подвеской колес. Изменяется конструкция поперечной рулевой тяги. Она сделана расчлененной, состоящей из трех частей: основной поперечной тяги 4 и двух боковых тяг — левой и правой. Для опоры основной тяги служит маятниковый рычаг, который по форме и размерам соответствует сошке . Соединение боковых поперечных тяг с поворотными рычагами цапф и с основной поперечной тягой выполнено с помощью шарниров, которые допускают независимые перемещения колес в вертикальной плоскости. Рассмотренная схема рулевого привода применяется главным образом на легковых автомобилях.

Рулевой привод, являясь частью рулевого управления автомобиля, обеспечивает не только возможность поворота управляемых колес, но и допускает колебания колес при наезде ими на неровности дороги. При этом детали привода получают относительные перемещения в вертикальной и горизонтальной плоскостях и на повороте передают усилия, поворачивающие колеса. Соединение деталей при любой схеме привода производят с помощью шарниров шаровых либо цилиндрических.

Виды рулевого управления

В зависимости от типа редуктора системы, рулевой механизм (система рулевого управления) может быть следующих видов:

  • Реечный – самый распространенный вид, используемый в легковых автомобилях. Этот вид рулевого механизма имеет простую конструкцию и отличается высоким КПД. Недостатки заключаются в том, что этот тип механизма чувствителен к возникающим ударным нагрузкам при эксплуатации в сложных дорожных условиях.
  • Червячный – обеспечивает хорошую маневренность автомобиля и достаточно большой угол поворота колес. Этот вид механизма меньше подвержен влиянию ударной нагрузки, но более дорогостоящий в изготовлении.
  • Винтовой – принцип работы похож на червячный механизм, однако он имеет более высокий КПД и позволяет создавать большие усилия.
  • С гидравлическим усилителем (ГУР). Его основным достоинством является компактность и простота конструкции. Гидравлическое рулевое управление среди современных транспортных средств является одним из наиболее распространенных. Недостатком такой системы является необходимость контроля уровня рабочей жидкости.
  • С электрическим усилителем (ЭУР). Такая система рулевого управления с усилителем считается наиболее прогрессивной. Он обеспечивает простоту регулировки настроек управления, высокую надежность работы, экономный расход топлива и возможность управления автомобилем без участия водителя.
  • С электрогидравлическим усилителем (ЭГУР). Принцип действия данной системы аналогичен системе с гидравлическим усилителем. Главное отличие заключается в том, что насос усилителя приводится в действие электродвигателем, а не ДВС.

Рулевое управление современного автомобиля может быть дополнено следующими системами:

  • Активного рулевого управления (AFS) – система изменяет величину передаточного отношения в зависимости от текущей скорости. Она позволяет корректировать угол поворота колес и обеспечивает более безопасное и устойчивое движение на скользких поверхностях.
  • Динамического рулевого управления – работает аналогично активной системе, однако в конструкции в этом случае вместо планетарного редуктора используется электродвигатель.
  • Адаптивного рулевого управления для транспортных средств – главной особенностью является отсутствие жесткой связи между рулем автомобиля и его колесами.

Неисправности рулевого управления

О том, что с рулевым управлением проблемы, может свидетельствовать один из следующих «симптомов»:

  • увеличение люфта (то есть свободного хода) руля, из-за чего управлять машиной становится сложнее;
  • сильное сопротивление рулевого колеса при вращении;
  • заедание или клин руля;
  • стук, другие посторонние звуки при выполнении поворота;
  • вытекание масла из картера системы.

Также о проблемах может говорить уменьшенный угол поворота колес при полном повороте руля.

Чаще всего встречаются следующие неисправности.

  • Появление зазоров в шарнирных креплениях тяги или нарушение зацепления червячной передачи. Такая проблема вызывает увеличенный ход руля. Диагностируется наблюдением за работой механизма во время поворота. «Лечится» неисправность заменой шарнира или корректной настройкой червячной передачи.
  • Износ. Чаще всего изнашиваются втулки или ось маятникового рычага, в результате чего при повороте начинают появляться посторонние звуки (чаще всего – характерный стук). Иногда помогает затягивание оси рычага имеющейся гайкой, но в большинстве случаев требуется замена изношенных компонентов.
  • Деформация рулевых тяг. Вызывает усиление сопротивления руля при выполнении поворота. Решается проблема заменой тяг на новые или их выпрямлением до исходной формы.
  • Недостаток масла в картере. Также вызывает более тугой проворот руля. Обычно вызывается износом сальников, в результате чего масло начинает подтекать. Решается проблема заменой этих деталей, а также восполнением потерянного масла путем дозаправки системы.
  • Обрыв привода насоса гидроусилителя. Приводит к тому, что поворот осуществляется без усиления и руль становится очень тугим. Устраняется путем замены приводного ремня.

Следует отметить, что проблемы с поворотом могут быть вызваны не рулевой системой, а некорректной балансировкой колес или недостаточным давлением воздуха в шинах.

Чтобы избежать проблем с системой рулевого управления, необходим ее периодический осмотр. Особенно это касается гидроусилителя – он является одним из самых «капризных» элементов. Если своевременно устранять мелкие неприятности, более серьезных поломок не возникнет. А значит, не возникнет и проблем при эксплуатации транспортного средства.

Конструкция рулевого управления автомобиля

Рулевое управление автомобиля состоит из трех компонентов:

  1. Колонки.
  2. Механизма.
  3. Привода.

За счет взаимодействия этих компонентов между собой осуществляется передача действий водителя на колеса управляемой оси, что и обеспечивает их поворот.

Дополнительно в конструкцию авто входит вспомогательный механизм – усилитель рулевого управления, частично компенсирующий усилие водителя,тем самым упрощая управление машиной.

Колонка

Рулевая колонка представляет собой вал, посредством которого усилие водителя передается на механизм. Один конец этого вала заведен в салон, и на него посажен руль (шлицевым соединением), посредством которого водитель и осуществляет действия для изменения направления движения (вращает его).

В современных авто рулевой вал является составным – состоящим из нескольких частей, соединенных между собой карданными шарнирами. Достоинства этой конструкции:

  1. Возможность регулировки. Составное устройство позволяет водителю настроить для себя удобное положение руля (изменить вылет и угол наклона колонки);
  2. Повышение безопасности. Составная конструкция является травмобезопасной — за счет карданных шарниров при фронтальном ударе авто о препятствие, колонка «ломается», а не выходит в салон навстречу водителю;

Вал рулевой колонки пустотелый, что позволяет протянуть внутри него проводку для питания  элементов – клавиши звукового сигнала, пиропатрона подушки безопасности, системы подогрева рулевого колеса.

На колонку устанавливается ряд органов управления оборудованием авто:

  • переключатель поворотников;
  • рычаг установки режима работы головного света (ближний, дальний свет);
  • переключатель стеклоочистителей и системы омыва лобового и заднего стекла;
  • переключатели передач КПП (в авто, оснащенных АКПП, РКПП, вариатором);
  • клавиши управления мультимедийной системой, круиз-контролем (непосредственно на руле);
  • замок зажигания;

Расположение указанных элементов на рулевой колонке обеспечивает удобный доступ к ним водителю.

Механизм

Рулевой механизм червячного типа

Рулевой механизм ключевой в системе. Этот узел обеспечивает увеличение усилия, приложенного водителем к рулю, и передачу его на привод.

Чаще всего используется рулевой механизм двух видов: червячный и реечный.

В червячном рулевом механизме основными элементами являются червячок и ролик. На легковых авто распространение получил механизм типа «шестерня-рейка». В узле этой конструкции вращательное движение шестерни преобразуется в возвратно-поступательное перемещение рейки с зубчатым сектором. Именно шестерня и рейка — ключевые элементы механизма. Эти составляющие размещаются в корпусе, закрепляемом в подкапотном пространстве на моторном щите или подрамнике.

Косозубая шестерня жестко посажена на второй конец вала рулевой колонки, поэтому воздействие на руль приводит к вращению шестеренки.

Благодаря зубьям шестеренка имеет постоянное зацепление с зубчатым сектором на рейке. Сама рейка представляет собой  шток, поэтому вращение шестерни приводит к смещению рейки по продольной оси (к примеру, при вращении руля влево, рейка уходит вправо). Рулевая рейка связана с рулевым приводом, воздействующим на колеса.

За счет такой конструкции механизма и обеспечивается передача усилия (и его увеличение благодаря заданному передаточному соотношению) от руля к приводу.

Статья в тему:

  • Гидроусилитель руля: устройство и принцип работы
  • Что такое демпфер в автомобиле и для чего он нужен?
  • Как отрегулировать развал-схождение своими руками?

Привод

Рулевой привод включает в себя систему тяг, соединяющих рейку с поворотными кулаками колес. К рейке тяги закрепляются жестко, а вот с поворотными кулаками они соединяются через рулевые шаровые наконечники.

В зависимости от конструкции подвески, в роли поворотного кулака может выступать амортизационная стойка (подвеска МакФерсона) или ступица колеса (в рычажных подвесках).

В подвеске МакФерсона возможность вращаться стойке вокруг оси обеспечивается опорным подшипником и шаровой опорой. В рычажных же подвесках вращение ступицы осуществляется за счет использования двух шаровых опор (верхней и нижней). Опоры и опорные подшипники хоть и являются составными элементами подвески, но от них зависит и работа рулевого управления.

Рулевой механизм

Предназначен для преобразования вращения вала рулевой колонки в поступательные движения элементов привода.

Наибольшее распространение на легковых автомобилях получили механизмы типа «шестерня-зубчатая рейка». Ранее же использовался еще один вид – «червяк-ролик», который сейчас в основном используется на грузовых авто. Еще один вариант для грузовиков – «винтовой».

«шестерня-рейка»

Распространение тип «шестерня-рейка» получил благодаря сравнительно простому устройству рулевого механизма. Состоит этот конструктивный узел из трех основных элементов – корпус, в котором размещается шестерня и перпендикулярно ей – рейка. Между двумя последними элементами имеется постоянное зубчатое зацепление.

Работает этот вид механизма так: шестерня жестко связана с рулевой колонкой, поэтому она вращается вместе с валом. Из-за зубчатого соединения вращение передается на рейку, которая при таком воздействии смещается внутри корпуса в ту или иную сторону. Если водитель вращает рулевое колесо влево, взаимодействие шестерни с рейкой приводит к тому, что последняя перемещается вправо.

Зачастую на авто применяются механизмы «шестерня-рейка» с фиксированным передаточным числом, то есть диапазон поворота рулевого колеса для изменения угла колес одинаков при всех их положениях. Для примера, предположим, что для поворота колес на угол 15° необходимо сделать 1 полный оборот руля

Так вот, неважно, в каком положении находятся управляемые колеса (крайнее, прямолинейное), для поворота на указанный угол придется сделать 1 оборот

Но некоторые автопроизводители устанавливают на свои авто механизмы с меняющимся передаточным числом. Причем достигается это достаточно просто – изменением угла положения зубьев на рейке в определенных зонах. Эффект от этой доработки механизма такой: если колеса стоят прямо, то для изменения их положения на те же 15° (пример) требуется 1 оборот. Но если они находятся в крайнем положении, то из-за измененного передаточного числа, колеса повернуться на указанный угол уже через пол-оборота. В результате диапазон поворота руля «от края до края» значительно меньше, чем в механизме с фиксированным передаточным числом.

Рейка с переменным передаточным числом

Помимо простоты устройства тип «шестерня-рейка» используется еще потому, что в такой конструкции возможна реализация исполнительных механизмов гидроусилителя (ГУР) и электроусилителя (ЭУР), а также электрогидравлического (ЭГУР).

«червяк-ролик»

Следующий тип – «червяк-ролик», менее распространен и на легковых авто сейчас практически не используется, хотя его можно встретить на автомобилях ВАЗ классического семейства.

В основе этого механизма положена червячная передача. Представляет червяк собой винт с резьбой особого профиля. Этот винт располагается на валу, соединенном с рулевой колонкой.

С резьбой этого червяка контактирует ролик, соединенный с валом, на который посажена сошка – рычаг, взаимодействующий с элементами привода.

Червячный рулевой механизм

Суть работы механизма такова: при вращении вала, винт вращается, что приводит к продольному перемещению ролика по его резьбе. А поскольку ролик установлен на валу, то это смещение сопровождается поворотом последнего вокруг своей оси. Это в свою очередь приводит к полукруговому движению сошки, которая и воздействует на привод.

От механизма типа «червяк-ролик» на легковых авто отказались в пользу «шестерни-рейки» из-за невозможности интегрировать в него гидроусилитель (на грузовых авто он все же имелся, но исполнительный механизм был вынесенным), а также достаточно сложной конструкции привода.

Винтовой тип

Конструкция винтового механизма – еще сложнее. В ней также имеется винт с резьбой, но контактирует он не с роликом, а со специальной гайкой, на внешней стороне которой нанесен зубчатый сектор, взаимодействующий с таким же, но сделанным на валу сошки. Также существуют механизмы с промежуточными роликами между гайкой и зубчатым сектором. Принцип же действия такого механизма практически идентичен червячному – в результате взаимодействия вал проворачивается и тянет сошку, а та в свою очередь – привод.

Винтовой рулевой механизм

На винтовой механизм можно установить гидроусилитель (гайка выполняет роль поршня), но на легковых авто он не применяется из-за массивности конструкции, поэтому и используется он только на грузовиках.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector