Принцип работы реостата
Содержание:
Переменные резисторы
Переменные резисторы, как правило, имеют минимум три вывода: от концов токопроводящего элемента и от щеточного контакта, который может перемещаться по нему. С целью уменьшения размеров и упрощения конструкции токопроводящий элемент обычно выполняют в виде незамкнутого кольца, а щеточный контакт закрепляют на валике, ось которого проходит через его центр.
Таким образом, при вращении валика контакт перемещается по поверхности токопроводящего элемента, в результате сопротивление между ним и крайними выводами изменяется.
В непроволочных переменных резисторах обладающий сопротивлением то-копроводящий слой нанесен на подковообразную пластинку из гетинакса или текстолита (резисторы СП, СПЗ-4) или впрессован в дугообразную канавку керамического основания (резисторы СПО).
В проволочных резисторах сопротивление создается высокоомным проводом, намотанным в один слой на кольцеобразном каркасе. Для надежного соединения между обмоткой и подвижным контактом провод зачищают на глубину до четверти его диаметра, а в некоторых случаях и полируют.
Существуют две схемы включения переменных резисторов в электрическую цепь. В одном случае их используют для регулирования тока в цепи, и тогда регулируемый резистор называют реостатом, в другом — для регулирования напряжения, тогда его называют потенциометром. Показанное на рис. 5 условное графическое обозначение используют, когда необходимо изобразить реостат в общем виде.
Для регулирования тока в цепи переменный резистор можно включить диумя выводами: от щеточного контакта и одного из концов токопроводящего элемента (рис. 6,а). Однако такое включение не всегда допустимо.
Рис. 5. Реостаты и переменные резисторы – условное обозначение.
Если, например, в процессе регулирования случайно нарушится соединение щеточного контакта с токопроводящим элементом, электрическая цепь ока-1 жется разомкнутой, а это может явиться причиной повреждения при
бора. Чтобы исключить такую возможность, второй вывод токопроводящего элемента соединяют с выводом щеточного контакта (рис. 6,б). В этом случае даже при нарушении соединения электрическая цепь не будет разомкнута.
Общее обозначение потенциометра (рис. 6,в) отличается от символа реостата без разрыва цепи только отсутствием соединения выводов между собой.
Рис. 6. Обозначение потенциометра на принципиальных схемах.
К переменным резисторам, применяемым в радиоэлектронной аппаратуре, часто предъявляются требования по характеру изменения сопротивления при повороте их оси.
Так, для регулирования громкости в звуковоспроизводящей аппаратуре необходимо, чтобы сопротивление между выводом щеточного контакта и правым (если смотреть со стороны этого контакта) выводом токопроводящего элемента изменялось по показательному (обратному логарифмическому) закону.
Только в этом случае наше ухо воспринимает равномерное увеличение громкости при малых и больших уровнях сигнала. В измерительных генераторах сигналов звуковой частоты, где в качестве частотозадающих элементов часто используют переменные резисторы, также желательно, чтобы их сопротивление изменялось по логарифмическому или показательному закону.
Если это условие не выполнить, шкала генератора получается неравномерной, что затрудняет точную установку частоты.
Промышленность выпускает непроволочные переменные резисторы, в основном, трех групп:
- А — с линейной,
- Б — с логарифмической,
- В — с обратно-логарифмической зависимостью сопротивления между правым и средним выводами от угла поворота оси ф (рис. 47,а).
Резисторы группы А используют в радиотехнике наиболее широко, поэтому характеристику изменения их сопротивления на схемах обычно не указывают. Если же переменный резистор нелинейный (например, логарифмический) и это необходимо указать на схеме, символ резистора перечеркивают знаком нелинейного регулирования, возле которого (внизу) помещают соответствующую математическую запись закона изменения.
Рис. 7. Переменный резистор с обратно-логарифмической зависимостью сопротивления.
Резисторы групп Б и В конструктивно отличаются от резисторов группы А только токопроводящим элементом: на подковку таких резисторов наносят токопроводящий слой с удельным сопротивлением, меняющимся по ее длине. В проволочных резисторах форму каркаса выбирают такой, чтобы длина витка высокоомного провода менялась по соответствующему закону (рис. 7,6).
Принцип действия
Описываемые приспособления похожи по своему функциональному назначению. Конструктивно и визуально самым простым считается реостат ползункового типа. Он подсоединяется к цепи с помощью верхней и нижней клеммы. Прибор сконструирован таким способом, что ток поступает по всей длине провода, а не в поперечном направлении витков. Это осуществляется благодаря надежной изоляции проводников.
Часто реостат применяют для регулирования в цепи вместо потенциометра. В таком случае выполняется его подключение с помощью трех клемм. В нижней части две из них являются входом, соединяются с источником напряжения. Одна нижняя клемма и верхняя свободная используются в качестве выхода. Когда происходит передвижение ползунка, напряжение без труда регулируется.
Реостат имеет свойство функционировать в балластном режиме, в чем может возникнуть необходимость при создании активной нагрузки во время потребления энергии. В такой ситуации рекомендуется учитывать рассеивающие способности используемого агрегата. Если есть избыточное тепло, прибор выходит из строя. При подключении в электросеть нужно правильно рассчитать рассеиваемую мощность реостата, если требуется, создать достаточное и правильное охлаждение.
Популярные решебники
Проволока проходит через несколько контактов.
То есть, реостат делит напряжение, и называется делителем напряжения или потенциометром. Включение лампы на 3,5 В вместе с лампой 60 Вт в сеть В.
Если изменять сопротивление проводника R, тогда будет меняться сила тока. Такой реостат состоит из изоляционной трубки 4, на которую навита проволочная спираль 5. Изобретён реостат был немецким физиком Иоганном Христианом Поггендорфом в г. Несмотря на выпуск многих разновидностей, принцип функционирования у всех приборов примерно одинаковый.
Почему так? Весьма удобно изменять длину проводника. Как тогда это сделать? Из всех металлов наименьшим удельным сопротивлением обладают серебро и медь.
Масляные Устройства с масляным охлаждением повышают теплоемкость и время нагревания вследствие хорошей теплопроводности масла. При этом один из контактов подсоединен к ползуну, с помощью которого и регулируется количество ампер в цепи. Включив такую проволочку в цепь источника электрического тока через контакты А и С и передвигая подвижный контакт С, можно уменьшать или увеличивать длину включённого в цепь участка АС.
Для пуска и регулирования электрических двигателей станков, грузоподъемных механизмов и пр. В предыдущей статье мы подробно рассмотрели что такое потенциометр. Включение лампочки от карманного фонаря в сеть В
Необходимо обратить внимание, что ток в той части реостата, по которой он проходит, идет по каждому витку обмотки, а не поперек них
На помощь придет уже известный нам прибор — реостат. Очевидно, что при таком включении к приемнику будет подаваться напряжение U, равное падению напряжения между зажимом 4 и подвижным контактом 3 реостата. Напряжение U представляет собой только часть напряжения Uи на зажимах источника. На рисунке изображена схема электрической цепи, содержащей резистор сопротивлением…
Что такое реостат, принцип работы
Реостаты — это двухполюсные переменные резисторы, которые настроены на использование только одного концевого контакта и только контакта стеклоочистителя.
Неиспользуемая концевая клемма может быть либо оставлена неподключенной, либо подключена напрямую к стеклоочистителю.
Это устройства с проволочной обмоткой, которые содержат плотные витки эмалированной проволоки для тяжелых условий эксплуатации, которые изменяют сопротивление ступенчато.
Изменяя положение стеклоочистителя на резистивном элементе, величина сопротивления может быть увеличена или уменьшена, тем самым управляя величиной тока.
Затем реостат используется для управления током путем изменения значения его сопротивления, превращая его в настоящий переменный резистор. Классический пример использования реостата — это управление скоростью модельного набора поездов или Scalextric, где величина тока, проходящего через реостат, регулируется законом Ома. Тогда реостаты определяются не только их резистивными значениями, но также и их возможностями по управлению мощностью как P = I 2 * R.
Классификация резисторов
Резисторы отличаются не только возможностью регулировать сопротивление. Они могут изготавливаться из разных резистивных материалов, иметь различное количество контактов и иметь другие особенности.
По типу резистивного материала
Элементы могут быть проволочными, непроволочными или металлофольговыми. Высокоомная проволока является признаком проволочного элемента, для ее изготовления используют такие сплавы, как нихром, константан или никелин. Пленки с повышенным удельным сопротивлением являются основой непроволочных элементов. В металлофольговых используется специальная фольга. Теперь выясним из чего состоят резисторы.
Конструкция полупроводника
Непроволочные делятся на тонкослойные и композиционные, толщина первых измеряется в нанометрах, а вторых – в долях миллиметра. Тонкослойные делятся на:
- металлоокисные;
- металлизированные;
- бороуглеродистые;
- металлодиэлектрические;
- углеродистые.
Композиционные в свою очередь подразделяются на объемные и пленочные. Последние могут быть с органическим или неорганическим диэлектриком. Чтобы понять есть ли полярность у резистора следует знать, что стороны у них идентичны.
По назначению сопротивления
Постоянные и переменные полупроводники также имеют некоторые различия в характеристиках. Постоянные делятся на проводники общего и специального назначения. Последние могут быть:
- высокочастотными;
- высоковольтными;
- высокомегаомными;
- прецизионными.
Такие детали используются в точных измерительных приборах, они выделяются особой стабильностью.
Переменные резисторы можно разделить на подстроечные и регулировочные. Последние могут быть с линейной или нелинейной функциональной характеристикой.
По количеству контактов
В зависимости от назначения резистора у него может быть один, два и более контактов. Сами контакты также отличаются, например, у SMD-резисторов это контактная площадка, у проволочных – особого состава проволока. Есть резисторы металлопленочные, с квантовыми точечными контактами, а в переменных они подвижные.
Разное количество контактов на элементах
Другие
Отличаются резисторы формой и типом сопротивления, а также характером зависимости величины сопротивления от напряжения. Описание зависимости величины может быть линейной или нелинейной. Использование элемента простое, емкость указывается на корпусе, минус и плюс не отличаются.
Резисторы могут быть защищены от влаги или нет, корпус может быть лакированным, вакуумным, герметичным, впрессованным в пластик или компаундированным. Нелинейные подразделяются на:
- варисторы;
- магниторезисторы;
- фоторезисторы;
- позисторы;
- тензорезисторы;
- терморезисторы.
Все они выполняют свою определенную функцию, одни меняют сопротивление от температуры, другие от напряжения, третьи от лучистой энергии.
Как включать реостат в цепь
- Как включать реостат в цепь
- Как подключить переменный резистор
- Как изменяется сила тока в резисторе
Учебник по физике, шариковая ручка, лист бумаги.
- Из каких элементов состоит электрическая цепь
- Как сделать дроссель
- Как сделать зарядное устройство автомобильного аккумулятора
- Как сделать самому тепловую пушку
- Как подключить резистор
- Как собрать тепловую пушку
- Как сделать электрический магнит
- Как увеличить силу тока
- Как повысить напряжение
- Как сделать магнитное поле
- Как понизить силу тока
- Как увеличить выделенную мощность
- Как изменяется ток при изменении сопротивления
- Как паять диоды
- Как определить мощность резистора
- Как выставить ток покоя
- Как повышать и понижать напряжение
- Как определить величину сопротивления
- Как зарядить автомобильный аккумулятор
- Как подключить амперметр постоянного тока
- Как изменить электрическую проводимость
- Как сделать резистор
Источник
Переменный резистор
Очень часто возникает необходимость изменять величину тока и напряжения при помощи изменения номинала резистора. Выполнить эту задачу поможет простой радиоэлемент, который называется реостатом. Он широко применяется для регулировки уровня громкости, увеличения напряжения на лабораторном источнике питания и т. д. Переменные резисторы, применяемые в радиотехнике, отличаются от лабораторных конструкциий. Однако принцип действия этих радиоэлементов одинаков. Части устройства очень похожи по своему предназначению. Например, ползунковый механизм, который применяется для регулировки тока.
Виды и устройство реостатов
Реостаты классифицируются по устройству и способу применения. По устройству реостаты делятся на 4 типа: проволочный, ползунковый, жидкостный и ламповый. Первый тип переменного резистора состоит из проволоки (материала с высоким удельным сопротивлением) и корпуса-изолятора. Проволочный проводник проходит через контакты, при соединении с которыми можно получить необходимую величину сопротивления.
Ползунковый реостат состоит тоже из проволоки с высоким удельным сопротивлением, корпуса-диэлектрика (на него она намотана) и ползунка. При передвижении ползунка происходит уменьшение или увеличение величины электросопротивления. Устройство применяется в лабораториях при проектировании различных электрических приборов, а также для проведения опытов в области физики или химии. Кроме того, модернизированная версия применяется в различной радиоаппаратуре.
Не слишком распространенным типом является модель жидкостного переменного резистора. Она имеет следующее строение: бак с электролитическим раствором и подвижные электроды.
Реостат бывает еще и ламповым. Он включает в свой состав набор ламп накаливания, которые соединены параллельно. Если изменить количество включенных ламп, то можно изменить его сопротивление. Однако устройство имеет один существенный недостаток: зависимость величины электрической проводимости от температуры нитей накаливания. По способу применения переменные резисторы следует классифицировать таким образом:
- пусковые;
- пускорегулирующие;
- балластные;
- для возбуждения;
- потенциометры.
Первый тип предназначен для плавного запуска электродвигателей. Пускорегулирующие переменные резисторы позволяют плавно запускать электрические двигатели постоянного тока, а также поддерживают регулировку величины силы тока. Балластные следует применять в электрических цепях для регулировки нагрузочной способности генератора электроэнергии. Они создают необходимую величину сопротивления в сети. Реостаты возбуждения используют в электрических машинах для поглощения лишней энергии.
Потенциометр предназначен для регулировки величины напряжения. Реостат устроен следующим образом: три клеммы позволяют получить от источника питания с фиксированным значением напряжения разные значения его величины. Например, понижающий трансформатор со значением напряжения на вторичной обмотке, равным 36 В. При использовании 2 транзисторов, диодного моста и реостата можно получить ряд напряжений от 0 до 34 В (2 В — потери при выпрямлении диодным мостом). Эта особенность позволяет делать и выпускать универсальные делители напряжения.
Схема и принцип работы
Обозначение реостата на схеме осуществляется в виде обыкновенного резистора, но со стрелкой, показывающей непостоянное значения сопротивления радиокомпонента. Принцип работы реостата довольно простой и основан на зависимости величины силы тока от величины сопротивления. Проводник, который находится на корпусе-изоляторе, подключен в электрическую цепь.
Реостат может выглядеть, как корпус-изолятор, из которого выведен специальный регулятор величины сопротивления. Однако некоторые модели, которые применяются в лабораториях, могут быть открытого типа. Они предназначены для демонстрации принципа действия устройства.
Электроток протекает по пути наименьшего сопротивления. Следовательно, ползунком можно регулировать протекание тока. Если проводник (материал с высоким удельным сопротивлением) задействован полностью, то, значит, и величина сопротивления будет максимальной. В случае, когда ползунок находится посередине проводника, сопротивление реостата равно R / 2. Подключение в электрическую цепь потенциометра, как и любого типа реостата, осуществляется последовательно.
Разновидности агрегатов
Большой популярностью пользуются реостаты, имеющие внешнее оформление в виде тора. Основная сфера их применения — электротранспорт (трамваи), промышленная отрасль. Регулирование осуществляется путем перемещения ползунка по кругу. Передвижение такой детали выполняется по обмоткам, которые расположены тороидально.
Устройство, выполненное по принципу тора, видоизменяет сопротивление практически без разрыва цепи. Его противоположностью является агрегат рычажного типа. Принцип работы такого реостата основан на том, что резисторы закреплены на специальной раме, они выбираются посредством специального рычага. При любой коммутации происходит разрыв контура.
Схемы, в которых задействуется рычажный прибор, лишены плавной регулировки сопротивления. Какие-либо переключения влекут за собой поступательное изменение показателей в сети. Что касается дискретности шагов, она зависит от диапазона регулировки и численности резисторов, присутствующих на раме.
Еще одной разновидностью выступают штепсельные реостаты, с помощью которых осуществляется ступенчатая регулировка сопротивления. Основное отличие — изменение параметров внутри сети без предварительного разрыва цепи. Когда штепсель поступает на перемычку, основная доля тока идет без сопротивления. Перенаправление тока на резистор осуществляется путем вытаскивания штепселя.
https://youtube.com/watch?v=ilrc3A-A3og
Жидкостные и ламповые приспособления относятся к специфическим видам реостатов. Ввиду наличия определенных недостатков они имеют узкую, специализированную сферу применения:
- Приборы жидкостного типа задействуются во взрывоопасной сфере в качестве управляющих деталей двигателя.
- Ламповые изделия характеризуются малой точностью и надежностью. Часто используются в учебных заведениях на уроках физики, в лабораториях, исследовательских центрах.
Назначение и устройство балластного реостата
Для формирования крутопадающей вольтамперной характеристики рабочего тока во время сварки, балластный реостат должен выполняет две функции: дискретно регулировать силу тока, и компенсировать его постоянную составляющую, которая возникает при питании сварочного поста от трансформатора.
Эффективность балластного реостата определяется числом его рабочих секций, каждая из которых представляет собой последовательную электрическую цепь из резистора с определённым сопротивлением и рубильника, механически разрывающего эту цепь. Соединение секций – параллельное, что создаёт наилучшие возможности для комбинированного включения в работу каждой из них. В результате регулировка тока может выполняться с шагом 5…10 А, чего в большинстве случаев бывает вполне достаточно. В общую цепь сварочного поста балластный реостат подключается последовательно источнику тока.
Конструктивно балластный реостат представляет собой агрегат, состоящий из:
- Закрытого обдуваемого корпуса.
- Нескольких плат из нихромовых или константановых лент.
- Прерывателей, число которых соответствует числу ступеней регулирования.
- Клемм, к которым подключаются кабеля сварочного аппарата.
- Блока включения нужного сварочного диапазона.
Все элементы управления выводятся на одну из внешних панелей корпуса. В наиболее современных конструкциях балластных реостатов в корпус встраиваются вентиляторы, устраняющие перегрев аппарата при длительной работе на больших токах (в противном случае для этого приходится последовательно подключать несколько балластных реостатов), а также конденсаторные батареи, которые компенсируют постоянную составляющую тока, возникающую при специальных процессах сварки, в частности, алюминия.
Линейка РБ наиболее распространённых балластных реостатов, выполненных по вышеописанной схеме, включает в себя следующие типоразмеры:
- РБ-201 – регулирует ток в пределах от 10 до 200 А;
- РБ-300 – регулирует ток в пределах от 10 до 300 А;
- РБ-302 – регулирует ток в пределах от 10 до 315 А;
- РБ-306 – регулирует ток в пределах от 6 до 315 А;
- РБ-501 – регулирует ток в пределах от 10 до 500 А.
Устройство и принцип работы
Конструкция постоянных резисторов довольно простая. Они состоят из керамической трубки, поверх которой намотана проволока или нанесена резистивная плёнка с определённым сопротивлением. На концы трубки вставлены металлические колпачки с припаянными выводами для поверхностного монтажа. Для защиты слоя используется лакокрасочное покрытие.
Устройство таких элементов можно понять из рисунка 2 ниже.
В большинстве моделей такая конструкция традиционно сохраняется, но сегодня существуют различные виды сопротивлений с использованием резистивного материала, устройство которых немного отличается от конструкции описанной выше.
Рис. 2. Строение резистора
Современную электронную аппаратуру наполняют платы, начинённые миниатюрными деталями. Поскольку тенденция к уменьшению размеров электронных приборов сохраняется, то требования к уменьшению габаритов коснулись и резисторов. Для этих целей идеально подходят непроволочные сопротивления. Они просты в изготовлении, а их номинальные мощности хорошо согласуются с параметрами маломощных цепей.
Казалось бы, что эра проволочных резисторов постепенно уходит в прошлое. Однако это не так. Спрос на проволочные сопротивления остаётся в тех сферах, где транзисторы с металлоплёночным или с композитным резистивным слоем не справляются с мощностями электрических цепей.
Для непроволочных резисторов используются следующие резистивные материалы:
- нихром;
- манганин;
- константан;
- никелин;
- оксиды металлов;
- металлодиэлектрики;
- углерод и другие материалы.
Перечисленные вещества обладают высокими показателями удельного сопротивления. Это позволяет изготавливать электронные компоненты с очень маленькими корпусами, сохраняя при этом значения номинальных величин.
Размеры и формы корпусов, проволочных выводов современных резисторов соответствуют стандартам, разработанным для автоматической сборки печатных плат. С целью надёжного соединения выводов способом пайки, выводы деталей проходят процесс лужения.
Конструкция регулировочных (рис. 3) и подстроечных резисторов (рис.4) немного сложнее. Эти переменные транзисторы состоят из кольцевой резистивной пластины, по которой скользит бегунок. Перемещаясь по кругу, подвижный контакт изменяет расстояние между точками на резистивном слое, что приводит к изменению сопротивления.
Рис. 3. Регулировочные резисторы Рис. 4. Подстроечные резисторы
Принцип действия.
Работа резистора основана на действии закона Ома: I = U/R , где I – сила тока, U – напряжение, R – сопротивление на участке цепи. Из формулы видно как зависят от величины сопротивления параметры тока и напряжения.
Подбирая резисторы соответствующего номинала, можно изменять на участках цепей величины тока и напряжения. Например, увеличивая сопротивление последовательно включённого резистора на участке цепи, можно пропорционально уменьшить силу тока.
Условно резистор можно представить себе в виде узкого горлышка на участке трубки, по которой течёт некая жидкость (см. рис. 5). На выходе из горлышка давление будет ниже, чем на его входе. Примерно, то же самое происходит и с потоком заряженных частиц – чем больше сопротивление, тем слабее ток на выходе резистора.
Источник
Что такое резистор?
Название этого электронного элемента произошло от латинского слова resisto — сопротивляюсь. То есть – это пассивный элемент применяемый в электрических цепях, действие которого основано на сопротивлении току. Основной характеристикой этого электронного компонента является величина его электрического сопротивления.
Пассивность данного электронного компонента означает то, что основной его функцией является поглощение электрической энергии. В отличие от активных элементов электроники, он ничего не генерирует, а только пассивно рассеивает электричество, преобразуя его в тепло. В схемах замещения сопротивление является основным параметром, в то время как ёмкость и индуктивность – паразитные величины.
Применение
Резисторы применяются во всех электрических схемах для установления нужных значений тока в цепях, с целью демпфирования колебаний в различных фильтрах, в качестве делителей напряжений и т. п.
Резисторы выполняют функции нагрузки в резистивных цепях, используются в качестве делителя напряжения (см. рисунок ниже) и тока, являются элементами фильтров, применяются для формирования импульсов, выполняют функции шунтов и многое другое. Сегодня трудно себе представить электрическую схему, в которой не задействованы несколько резистивных элементов.
Без резисторов не работает ни один электронный прибор.
Виды резисторов
Резистор – инертный (пассивный) элемент цепи, у которого сопротивление может быть как постоянным, так и переменным. Это зависит от его конструкции. Он применяется для регулирования силы тока и напряжения в цепях, рассеивания мощности и иных ограничений. Дословный перевод с английского слова «резистор» – сопротивляюсь.
Общий вид элементов
Классификацию резисторов можно провести по следующим критериям:
- назначение элемента;
- тип изменения сопротивления;
- материал изготовления;
- вид проводника в элементе;
- ВАХ – вольт-амперная характеристика;
- способ монтажа.
Устройства делятся на элементы общего и специального назначения. У специальных деталей повышенные характеристики сопротивления, частоты, рабочего напряжения или особые требования к точности.
Тип изменения сопротивления делит их на постоянные и переменные. Переменные резисторы конструктивно отличаются не только от элементов, имеющих постоянное сопротивление, но и между собой. Они различны по конструкции: бывают регулировочные и подстроечные.
Регулировочные элементы переменного типа предназначены для частого изменения сопротивления. Это входит в процесс работы схемы устройства.
Подстроечный тип предназначен для того, чтобы выполнить подстройку и регулировку схемы при первичном запуске. После этого изменение положения регулятора не выполняют.
При изготовлении резистивных тел (рабочей поверхности) используются такие материалы, как:
- графитовые смеси;
- металлопленочные (окисные) ленты;
- проволока;
- композиционные компоненты.
Особое место занимают в этом ряду интегральные элементы. Это резисторы, выполненные в виде p-n перехода, который представляет собой зигзагообразный канал, интегрируемый в кристалл микросхемы.
Внимание! Интегральные элементы всегда отличаются повышенной нелинейностью своей ВАХ. Поэтому они применяются там, где использование других типов не представляется возможным. Вид вольт-амперной характеристики делит рассматриваемые элементы на линейные и нелинейные
Особенность нелинейности заключается в том, что компонент меняет своё сопротивление в зависимости от следующих характеристик:
Вид вольт-амперной характеристики делит рассматриваемые элементы на линейные и нелинейные. Особенность нелинейности заключается в том, что компонент меняет своё сопротивление в зависимости от следующих характеристик:
- напряжения (варисторы);
- температуры (терморезисторы);
- уровня магнитного поля (магниторезисторы);
- величины освещённости (фоторезисторы);
- коэффициента деформации (тензорезисторы).
Нелинейность вольт-амперной характеристики расширило возможности их применения.
Способ монтажа может быть:
- печатным;
- навесным;
- интегрированным.
При печатном монтаже выводы детали вставляются в отверстие на плате, после чего припаиваются к контактной дорожке панели. Такой способ установки автоматизирован, и пайка происходит путём погружения контактных площадок в ванну с припоем.
Навесной монтаж, в большинстве своём, ручной. Выводы соединяемых деталей сначала скручиваются между собой, потом спаиваются для улучшения контакта. Сама пайка не предназначена для выдерживания механических нагрузок.
Интегрированный монтаж проводится в процессе изготовления кристаллов микросхем.