Принцип работы и устройство реактивного двигателя

Реактивный двигатель для ракет своими руками

Иногда хочется чего-то странного. Вот, недавно меня потянуло на ракетомоделизм. Так как я строю ракеты на нубовском уровне, для меня ракета состоит из двух частей – двигателя и корпуса. Да, я знаю, что все намного сложнее, но даже с таким подходом ракеты летают. Естественно, вам интересно, как делается двигатель.

Для корпуса двигателя я использую толстостенные ПВХ трубы диаметром 3/4 дюйма. Трубы такого диаметра относительно дешевы и широкодоступны. Лучше всего трубы режутся специальными ножницами. Я очень много намучался, пытаясь резать такие трубы электролобзиком – всегда получалось очень криво.

Трубу я размечаю так:

Все размеры в дюймах. кто не знает, размер в дюймах нужно умножить на 2.54 и получится размер в сантиметрах. Эти размеры я нашел в замечательной книге

Там есть и куча других конструкций. Верхний кусок двигателя (который пустой) я не делаю. Там должен быть вышибной заряд для парашюта, мне пока далеко до этого.

Отрезанный кусок трубы вставляется в специальную приспособу. Покажу все приспособы сразу, дабы не возникало вопросов:

Длинная палка играет роль “пестика” Ей утрамбовывается глина и топливо. Вторая деталька – это кондуктор. Он служит для того, чтобы просверлить сопло точно по центру двигателя. Вот их чертежи:

Сверло используется длинное – длинной 13см. Его как раз хватает для того, чтобы просверлить канал через все топливо.

Теперь нужно замешивать топливо. Я использую стандартную “карамельку” – сахар и селитра в соотношении 65 селитры/35сахара. Плавить карамель я не хочу – занятие это рискованное, да и не стоит это того геморроя. Я не пытаюсь вытянуть из топлива все возможное. Это ведь любительское ракетостроение. Я просто смешиваю сахарную пудру и селитру в порошках:

Далее, формируем сопло. Для этого забираем у любимого котэ наполнитель туалетов (желательно, неюзанный), перетираем его в ступке до более-менее однородной массы и слегка смачиваем водой.

Забиваем порошок по разметку. Бить нужно довольно сильно.

Забивка топлива и заглушки ничем не отличается. Кажется, что по топливу стучать опасно, но карамелька трудно воспламеняется даже от спички

Естественно, базовые меры предосторожности соблюдать стоит – не склонятся над двигателем, работать в защитной маске, итп

Последние 5мм заглушки я оставляю для термоклея. Я несколько раз пробовал сделать ракету без заглушки из термоклея, верхнюю пробку вырывало давлением. Термоклей обладает отличной адгезией к пластику и не успевает расплавится при горении двигателя.

Сверлим сопло через кондуктор:

Топливо очень плохо сверлится – сахар плавится и липнет на сверло, поэтому его приходится часто вытаскивать и счищать налипшее топливо. Проверяем сопло:

Заливаем последние 5мм трубки и ее торец термоклеем

Все, двигатель готов. Вот так выглядит двигатель на статических испытаниях. К сожалению, видео не показательно – в этом двигателе канал был просверлен на половину, и фотоаппарат не правильно записал звук. В реале “рев” двигателе очень громкий и серьёзный, а не такой игрушечный как на записи.

Источник

Достоинства и недостатки ПуВРД, сфера применения

Основными преимуществами пульсирующих воздушно-реактивных двигателей можно считать их простую конструкцию, что тянет за собой их невысокую стоимость. Именно эти качества и стали причиной их использования в качестве силовых агрегатов на военных ракетах, беспилотных самолетах, летающих мишенях, где важны не долговечность и сверхскорость, а возможность установки простого, легкого и дешевого мотора, способного развить нужную скорость и доставить объект к цели. Эти же качества принесли ПуВРД популярность среди любителей авиамоделизма. Легкие и компактные двигатели, которые при желании можно сделать самостоятельно или же купить по приемлемой цене, прекрасно подходят для моделей самолетов.

Недостатков у ПуВРД немало: повышенный уровень шума при работе, неэкономный расход топлива, неполное его сгорание, ограниченность по скорости, уязвимость некоторых конструктивных элементов, таки как входной клапан. Но, несмотря на такой внушительный перечень минусов, ПуВРД по-прежнему незаменимы в своей потребительской нише. Они – идеальный вариант для «одноразовых» целей, когда нет смысла устанавливать более эффективные, мощные и экономичные силовые агрегаты.

После того,как в журнале «Крылья Родины»(это было давно)появились чертежи ПуВРД конструкции чемпиона мира по скоростным моделям с таким двигателем Иванникова,у меня появилось страстное желание сделать такой. Правда, листового жаропрочного железа у меня не было. Решил делать из консервной банки. Намотал сварочный трансформатор для точечной сварки,изготовил соответствующие электроды и за дело. Токарному и слесарному делу обучен с юности. Клапанную решётку изготовил из дюраля,бак выклеил из стеклоткани,клапана и «рессоры» к ним сделал из листовой пружинной стали толщиной 0,15мм. Для охлаждения клапанов решил сделать бачёк под метанол или воду со своей распылительной трубкой и дозирующей иглой. Запускали(с друзьями) двигатель в помещении слесарного участка.Рёв был такой,что кто-то из ребят заметил,как стёкла на окнах прогнулись. Двигатель проработал меньше минуты,т.к. труба,изготовленная из консервной банки прогорела. Но адреналин был. Сейчас я могу представить на фото только «голову» ПуВРД: бак и клапанную решётку в сборе с клапанами. По прошествии определённого времени у меня появился небольшой листик жаропрочной стали толщиной 0,15мм.Я решил из него сварить маленький ПуВРД. Он запускался несколько раз. На моделях не использовался,хотя при весе 90гр. давал тягу 600гр. Однажды он произвёл «фурор»,когда в перерыве краевого совещания председателей комитетов ДОСААФ,для отвлечения от скуки совещания, он был запущен с помощью велосипедного насоса и самодельного высоковольтного блока на канцелярском столе. Смешно было смотреть, как толпа председателей,бросив перекур, ринулась к столу посмотреть на «диковину». Искровая свеча самодельная. Высоковольтный блок питался от батарейки КБС. Прерывание питания осуществлялось от прерывателя звонкового типа. В блоке используется бобина зажигания от мотоцикла . Есть у меня и ещё один ПуВРД,правда не доделанный, нет диффузора. Может-быть доделаю. Особенность этого двигателя та,что на выхлопной трубе есть поперечные кольца.Это сделано для того чтобы трубу не раздуло,т.к. толщина металла 0,15мм. Представляю несколько фотографий: : Сейчас эта техника напоминает мне о хороших былых временах. Вообщем-ностальгия.

Техника — молодёжи 1951-07, страница 39

аяется таким образом. В один на торцов рулончика пленки (1) вставляют гвовдь (6) толщиной 1—1,5 мм. Затем рулончик выеие с гвоздем туго обматывают плотной бумагой (2) с фольгой (7) (ог шоколада или конденсатора) и прочно обвязывают мокрой суровой ниткой. Теперь гвоздь можно вынуть, а в бумаге останется отверстие для сопла Второй конец двигателя стягивается ниткой еще туже и крепче, наглухо.

Чаще всего неудачи с работой двигателя происходят от недостаточно прочного и тугого связывания его глухого конца. Поработав 1—2 секунды, газы прорывают оболочку, просочившись через глухой конец.

Способы установки двигателя на разных моделях видны на рисунках.

Внутри модели укрепляется бумажная трубка, в которой и устанавливается сменный двигатель. Угол установки двнга-

ПРОСТЕЙШИЕ РЕАКТИВНЫЕ ДВИГАТЕЛИ ДЛЯ МОДЕЛЕЙ

На наших глазах сбываются вещие слова К. Э. Циолковского: «За эрой аэропланов винтовых должна последовать эра аэропланов реактивных». Естественно, что юные техники и прежде всего авиамоделисты стремятся воплотить в своих моделях реактивную технику.

На Центральной станции юных техников имени Н. М. Шверника разработан простейший реактивный двигатель, работающий на твердом топливе. Топливом этим является обычная, доступная каждому фотопленка или кинопленка.

При собственном весе в 12—15 г такой реактивный двигатель иа протяжении 8—10 секунд дает равномерную тягу в 50—70 г. Этой тяги вполне достаточно, чтобы поднять в воздух модель весом в несколько десятков граммов или заставить промчаться по асфальту реактивный автомобильчик на расстояние нескольких десятков метров. Наконец, этот же двигатель, поставленный на плавающую модель, обеспечивает ее стремительный бег по поверхности воды со скоростью до 3 м В секунду.

Процесс изготовления реактивного двигателя начинается с подбора необходимых материалов.

Пленку лучше всего использовать уже проявленную. Непро-явленная фого-кннопленка прн сгорании оставляет жесткий остаток — пепел. Он может забить сопло и помешать выходу газов, что повысит давление внутри ракеты и повлечет за собой взрыв.

Очищать пленку от эмульсии не следует. Чистый целлулоид, смотанный в тугой рулон, внутри ракеты нередко гаснет, сгорев только наполовину.

Для изготовления двигателя (смотри рисунок) следует взять кусок кинопленки длиной не более 35 см и туго смотать ее в трубку (1).

Первый сгиб от края кинопленки делается шириной ие более 1 мм. После того как вся пленка смотана, кран ее при

клеивается клеем и получившийся рулон туго обматывается прочной ниткой. После высыхания клея нитку можно снять.

Рулой пленки из отрезка в 35 см должен иметь толщину в 11—12 мм.

Для оболочки двигателя нужны полоска бумаги (писчем) длиною в 40 см (2) и две деревянные бобышки (3 и 4). а одной из которых (4) сверлится (нлн прожигается проволокой) будущее сопло — отверстие шириной в 1—1,5 мм.

Сборка двигателя производится, как показано иа рисунке.

Рулон пленки с примыкающими к обоим его концам бобышками туго завертывается в полоску бумаги и поверх бобышек крепко обвязывается прочной (суровой) ниткой (5). Двигатель готов к действию.

Приводится в действие двигатель раскаленной проволочкой, которая вводится на 1—2 секунды черев сопло внутрь двигателя.

Возможна и другая конструкция такого двигателя — без деревянных бобышек. Этот двигатель изготов-

теля обычно нулевой по отношению к линии движения модели Особенно точно должен быть установлен двигатель иа летающих моделях.

Угол даже в +2° влечет резкий заход модели в мертвую петлю.

Можно изготовить двигатель из двух рулонов пленки, укладывая нх плотно один к другому. Внутренний диаметр сопла при этом должен быть 2—2,5 мм.

Такой двойной заряд работает 15—16 секунд. Сила тяги остается прежней.

Увеличивать размеры двигателя до трех рулонов пленки не рекомендуется, так как сопло будет засариваться золой сгоревших рулонов н двигатель будет взрываться.

Не рекомендуется увеличивать и толщину двигателя. Такой «толстый» двигатель может успешно работать лишь при широком сопле (5—6 мм и больше). Сила же тяги останется такой же, как у однорулонного, «тонкого» двигателя. Попытка сузить диаметр сопла приведет к разрыву двигателя.

Следующие правила безопасности обязательны для работы с двигателями на фото-кинопленке:

1 Отрезок пленки для реактивного двигателя не должен превышать 35 см длиною.

2. Пленку нужно смотать в очень тугой рулончик. Просвет в центральной части рулона не должен превышать 1—1,5 мм.

3. Клей ие должен просачиваться на торцовые концы рулона пленки.

4. Оболочку ракеты не следует делать hi дерева или металла. Она должна быть из бумаги (писчей) Hjfff из бумаги с прослойкой тонкой фольги.

П. Аиохнн

37

Турбореактивный двигатель своими руками

Мало кто знает о том, что турбореактивный двигатель можно собрать собственными руками самостоятельно. Принцип работы такого устройства заключается в проталкивании огромного количества воздуха за короткий промежуток времени, любой подобный двигатель а если быть совсем точным — турбина, основывается на законе Ньютона. Внутри каждого подобного экземпляра находится как правило компрессор и отсек сгорания топлива который нужен для того чтобы разогреть входящий поток воздуха начиная от 1500 и до 2000 градусов, зависит от конкретной модели двигателя. Для того чтобы конструкция не расплавилась используется специальный тип металла который выдерживает подобные температуры.

Топливо по каналам проходит в отсек предназначенный для сгорания топлива, где по специальным отверстиям подается в сам двигатель тем самым совершая впрыск топлива. В этом отсеке двигателя после того как воздух нагрелся до 1500 градусов он поступает дальше в выходной вал который визуально напоминает из себя совокупность нескольких вентиляторов соединенных последовательно друг за другом разного диаметра. Проходя через них воздух охлаждается прежде чем будет выброшен из турбины.

Самое интересное в этом, что турбореактивный двигатель можно собрать на базе обычной турбины от автомобиля, диапазон наддува которой начинается от 2.5 бар. Взяв более менее большую турбину от авто можно собрать турбореактивный двигатель своими руками. Для этого вам потребуется лишь знания проектирования турбореактивного двигателя, чертежи которого можно найти в свободном доступе. Работы которые предстоит проделать прежде чем у вас получится нечто похожее на настоящий реактивный двигатель можно разделить на несколько частей. Самое первое что придется сделать это отломать лопасти которые есть в обычной турбине и придать им нужную форму, потому как поток воздуха в реактивной турбине намного больше нежели в турбине автомобиля. Далее придется вручную сделать камеру сгорания для впрыска топлива по каналам. Модернизированные лопасти которые ранее были демонтированы нужно будет вставить в отсек для сгорания топлива.

По итогу всех действий у вас должно получится что-то похожее на это

По большому счету подобные манипуляции будут занимать основное время на проектирование частей турбины в нужном масштабе, это самое сложное с чем предстоит столкнутся. Все остальное сводится к тому чтобы подогнать нужные детали и совместить их между собой. Подробные чертежи есть в свободном доступе и при должных знаниях можно сделать реактивную турбину своими руками взяв обычную турбину от автомобиля. Это особенно актуально если учесть то, что найти хорошую турбину в свободной продаже за доступную цену практический не представляется возможным. Реактивный двигатель сделанный своими руками на базе турбины от авто может выдавать тягу до 9кг при хорошей качественной сборке.

На подобных двигателях летают беспилотники которые имеют вес порядка 60кг и более. Так-же подобный двигатель способен разогнать обычную машину до скорости 90-100кмч а иногда и 130кмч зависит от конкретной сборки и конкретной машины. Путем не сложных манипуляций такой двигатель на реактивной тяге можно доработать на повышение количества проталкиваемого воздуха тем самым увеличив мощность в несколько раз.

Источник

История развития реактивных двигателей

Эволюция реактивных двигателей неразрывно связана с развитием авиации. На протяжении практически всей ее истории улучшение характеристик летательных аппаратов обеспечивалось главным образом непрерывным совершенствованием авиамоторов.

Первые самолеты были оснащены поршневыми двигателями, и подобная ситуация оставалась неизменной на протяжении нескольких десятилетий. Постепенно их конструкция улучшалась, возрастала мощность, уменьшался расход топлива. Но к середине 40-х годов прошлого века стало понятно, что поршневой двигатель самолета достиг своего предела, и для дальнейшего развития необходимы совершенно другие технологии и новые конструкторские решения.

Попытки создания летательных аппаратов с реактивным двигателем предпринимались еще на заре авиации. В 1913 году французский инженер Лорен получил патент на конструкцию прямоточного реактивного двигателя (ПВРД). В 1921 году француз Максим Гийом создал проект двигателя, имевшего основные элементы современного воздушно-реактивного двигателя: камеру сгорания, компрессор и одну турбину, приводимую в движение выхлопными газами. Однако изобретатель так и не смог никого заинтересовать своим проектом. В 1928 году авиатор Фриц Стамер впервые поднялся в небо на аппарате с ракетным приводом.

Интересовались изучением данной темы и в России. Важный вклад в развитие реактивного движения внесли Кибальчич, Жуковский, Мещерский, Циолковский. Последний сделал обоснование полета ракеты с жидкостным двигателем (ЖРД), а также описал многие особенности его конструкции.

В 1930 году англичанин Фрэнк Уиттл получил патент на конструкцию работоспособного турбореактивного двигателя, позже он основал компанию, создавшую первые британские РД. В 1935 году немецкий изобретатель Ганс фон Охайн разработал турбореактивный двигатель HeS, а в 1939 году в небо поднялся первый в мире летательный аппарат с ТРД. Скорость первого самолета с реактивным двигателем He 178 была выше, чем у самой быстрой поршневой машины (700 против 650 км/ч), правда, при этом он был менее экономичен и, соответственно, имел меньший радиус действия.

В СССР проект первого истребителя с ВРД был разработан конструктором Люлькой в 1943 году. Но он был «зарезан»: руководство советской авиационной отрасли не верило в перспективы таких моторов. Зато у германских конструкторов, работавших в области реактивного авиастроения и ракетной техники, подобных проблем со своим начальством не было. В 1944 году немцы сумели наладить серийное производство истребителя-бомбардировщика с двумя ТРД Me.262 и реактивного бомбардировщика Arado Ar 234 Blitz. В конце войны немецкой промышленностью также был освоен выпуск пульсирующих воздушно-реактивных двигателей (ПуВРД), которыми оснащались самолеты-снаряды Фау-1.

После войны началась настоящая эра реактивной авиации: ведущие мировые державы занялись интенсивной разработкой ВРД. Уже в 1946 году был создан первый советский реактивный Як-15 на основе трофейных немецких двигателей Jumo-004, а через год в КБ Люльки появился отечественный турбореактивный ТР-1. В 1947 году на вооружение был принят истребитель МиГ-15, оснащенный мотором РД-45. В середине 50-х годов началось серийное производство первого советского пассажирского реактивного самолета Ту-104. К этому времени СССР превратился в одного из лидеров в области авиационного моторостроения. Дальнейшее развитие технологий позволило создать двигатели, с помощью которых самолеты сначала преодолели звуковой барьер, а затем вышли на сверхзвук.

РЕЗУЛЬТАТЫ

В одной из серий экспериментов мне удалось получить надежные вспышки при каждой прокачке воздуха. Однажды даже была повторная вспышка. Правда, слишком слабая, чтобы вызвать следующие. Но даже при этих одиночных вспышках двигатель ощутимо подавался вперед, что свидетельствует о потенциально высокой тяге. Общий вес же заправленного двигателя без системы зажигания составил феерические 40 граммов! Однако для дальнейшей самостоятельной работы двигатель «не схватывает».

По-видимому, конфигурация факела смеси при стартовой продувке и при самостоятельном всасывании сильно различаются и искровое зажигание в одной точке не обеспечивает работу во всех режимах.

Возможно, я поставил перед собой слишком высокую планку в смысле доступности и технологичности этого мотора, и для получения работоспособной конструкции требуется частичный возврат к более традиционным решениям. Но я надеюсь, что-то из моих идей и наработок пригодится, и авиамоделисты получат силовую установку неслыханной легкости, простоты в изготовлении и дешевизны. Предлагаю читателям, имеющим практический опыт эксплуатации и создания модельных ДВС, подключиться к этой работе.

Шаг 1: Прорабатываем базовую конструкцию двигателя

Начнём процесс сборки двигателя с 3Д моделирования. Изготовление деталей с помощью ЧПУ станка значительно облегчает процесс сборки и уменьшает количество часов, которые будут потрачены на подгонку деталей. Главное преимущество при использовании 3D процессов – это способность видеть, как детали будут взаимодействовать вместе до того момента, как они будут изготовлены.

Если вы хотите изготовить действующий двигатель, обязательно зарегистрируйтесь на форумах соответствующей тематики. Ведь компания единомышленников значительно ускорить процесс изготовления самоделки и значительно повысит шансы на удачный результат.

Мотор по патенту Локведа

Устройство можно соорудить любого размера, если строго соблюдать необходимые пропорции. Реактивный двигатель, своими руками сделанный, не будет иметь движущихся частей. Он способен функционировать на любом виде топлива, если будет предусмотрено приспособление для его испарения до входа в камеру сгорания. Однако старт производят на газе, так как этот вид топлива намного удобнее других. Соорудить конструкцию просто, да и денег уйдет не так уж много. Но надо приготовиться к тому, что работать будет с большим шумом реактивный двигатель.

Своими руками устанавливается и испаряющий распылитель для жидкого топлива. Его помещают на конец металлической трубы, через которую пропан поступает в камеру сгорания. Однако если планируется применять только газ, то это приспособление устанавливать необязательно. Можно пропан просто запускать через трубку 4 мм диаметром. Ее прикрепляют к камере сгорания при помощи фитинга на десять миллиметров. Иногда предусматривают также разные трубки для пропана, керосина и дизельного топлива.

На старте газ поступает в камеру сгорания, и при возникновении первой искры двигатель запускается. Баллоны сегодня приобрести нетрудно. Удобным является, например, имеющий одиннадцать килограмм топлива. Если предполагается большой расход, то редуктор не обеспечит необходимым потоком. Поэтому в таких случаях устанавливают просто игольчатый клапан. Баллон при этом нельзя опустошать до конца. Тогда в трубке не произойдет возгорания.

Чтобы установить свечу для искры, в камере сгорания нужно предусмотреть специальное отверстие. Его можно изготовить при помощи токарного станка. Корпус выполняют из нержавеющей стали.

Конструкция реактивного ранца

История конструирования подобных аппаратов сохранила сведения о двух видах прототипов:

  1. Оснащённого ракетным модулем (Rocket Belt).
  2. Оснащённого турбореактивным модулем (Jet Belt).

Конструкция аппаратов первого типа отличается простой схемой исполнения. Именно этот фактор стал причиной высокой популярности Rocket Belt.

При желании не исключена даже возможность сборки классической конструкции в условиях кустарного производства. Но преимущественный фактор Rocket Belt сводит на нет другой момент – существенное ограничение времени полёта.

Рекордный показатель для этих аппаратов — не более 30 секунд полёта. При этом расход перекиси водорода неимоверно высокий. Поэтому область применения аппаратов типа Rocket Belt пока что очерчена лишь границами показательных шоу. Здесь можно вспомнить Олимпиаду США (1984), где демонстрировался показательный полёт.

Сейчас уже есть модификации более продвинутые, чем та что на картинке. Способные перемещать человека по воздуху около 1 часа

Элементы реактивного модуля Rocket Belt:

  • прочный корсет (стеклопластик),
  • система крепёжных ремней,
  • шасси на базе лёгких металлических трубок,
  • пара баллонов с перекисью водорода,
  • баллон, заправленный сжатым азотом,
  • ракетный модуль на шарнирах.

Элементы ракетного модуля (Jet Belt):

  • газовый генератор,
  • реактивные сопла (2 шт.),
  • рычаги управления (2 шт.),
  • тяга поворотная,
  • механизм управления подачей топлива,
  • механизм управления реактивными соплами.

Реактивный ранец: основы технологии

Поворотной тягой поднимается клапан заправки топлива.  Газообразный азот давлением 40-50 атмосфер давит массу перекиси водорода. Вещество устремляется в камеру генератора. Там — в камере, происходит активный контакт пластин серебра, обработанных нитратом самария и заполнившей камеру перекиси водорода.

Испытательный полёт среди небоскрёбов с ракетным ранцем Rocket Belt

Контакт сопровождается активной реакцией и способствует быстрому образованию парогазовой смеси. Полученная парогазовая среда высокой температуры и давления устремляется через каналы в область реактивных сопел.

Здесь газовая смесь резко расширяется, получает ускорение до сверхзвуковой скорости , выбрасывается наружу. Создаётся эффект реактивной тяги, благодаря которому допустимо воздействовать на объект, в частности — поднять объект в воздух.

Турбореактивный вариант устройства (Jet Belt)

Аппарат несколько иной конфигурации – турбореактивный ранец персонального пользования, изобрели в 1969 году. Прототип турбореактивного блока WR-19, массой 31 кг, создали инженеры Венделл Мур и Джон Халберт.

Эксперименты с этой модификацией турбореактивного ранца продолжаются до сего дня. Результаты положительного характера есть, но затраты на оборудование не позволяют запустить турбореактивный ранец в серийное производство

Первые испытания прототипа Jet Belt провели тем же годом и получили интересные результаты – перелёт расстояния в 100 метров на семиметровой высоте.

В основу энергетики Jet Belt заложено смешивание керосина и воздуха. Смесь сжимается до нескольких десятков атмосфер и подаётся компрессором в рабочую камеру — один из двух рабочих отсеков аппарата. Второй отсек выделен под модуль охлаждения, составляющий охлаждающий контур камеры сгорания.

Воздушно-керосиновая смесь, заполнив камеру сгорания,  воспламеняется. Образовавшийся реактивный поток устремляется сквозь сопла наружу. Механизм управления соплами даёт возможность регулировать силу и направление реактивного потока.

Конструкция турбореактивного действия характерна выраженным КПД. Этот вариант установки показывает лучшие параметры полёта: продолжительности, ускорения, высоты. Но турбореактивным ранцам присущи сложность системы и значительные финансовые издержки производства.

Сделать подобные устройства своими руками невозможно тем более. Для этого требуется уникальное оборудование и специалисты. Разве если только попытаться соорудить реактивную установку самостоятельно чисто в целях эксперимента.

О физике

Ватт представляет произведение ампер на вольт. Киловатт — это 1000 ватт. Вольт равен произведению Ампер (сила тока) на Ом (сопротивление). Добавляя витки, вы увеличите мощность генератора, но и необходимую требуемую работу при вращении ротора. В данном случае рекомендуется отталкиваться от требований аккумулятора на потребление, а не на отдачу.

Разумеется, возможно сделать расчеты будущего изделия, но в целях безопасности рекомендуется поэкспериментировать с малой мощностью ручного генератора, так как без опыта с первого раза собрать полностью рабочую модель не получится. Причиной этого могут служить мелкие недочеты, неподходящие материалы и прочее, а следствием нарушения техники безопасности — чья-то жизнь. Используйте для начала аккумулятор на 12 вольт и проволоку меньшего диаметра. В качестве ротора — простой ферромагнитный сердечник (железный цилиндр подойдет). Для начала можно сделать авто двигатель на воде для какой-нибудь машинки.

С генератора переменного тока потребуется сделать цепь из трансформатора (высокого напряжения в низкое), 4 диода прямоугольником (одностороннее движение), конденсатор (для бесперебойности), резистор и стабилитрон (ограничение по верхней и нижней планке) и последним регулятор. Вся цепь подключается к накопительной батарее. От батареи непосредственно двигатель под винт. Двигатель можно аналогичный изготовить.

С двигателя для реактивного движения делается вытяжка из проводов (с гидроизоляцией) или бобина. Удлинение размещается у нижнего основания лодки. Винт прикрепляется к нему. Форма винта, углы и количество лепестков по усмотрению.

В маленьком размере получится лодка с ручной подзарядкой и соплом, что обеспечит высокую скорость. Если масштаб увеличить, то при правильном подходе получится мощный двигатель на воде, а главное, появятся навыки.

Как сделать реально работающий газотурбинный двигатель в домашних условиях

Самое сложное в изготовлении и самое важное для работы турбины — это ступень компрессора. Обычно для его сборки требуется точный обрабатывающий инструмент с ЧПУ или ручным приводом

К счастью, компрессор работает при низкой температуре и может быть напечатан на 3D-принтере.

Еще одна вещь, которую обычно очень трудно воспроизвести в домашних условиях, это так называемая «сопловая лопатка» или просто NGV. Путем проб и ошибок автор нашел способ, как сделать это, не используя сварочный аппарат или другие экзотические инструменты.

Что понадобится: 1) 3D-принтер, способный работать с нитью PLA. Если у вас есть дорогой, такой как Ultimaker – это замечательно, но более дешевый, такой как Prusa Anet, тоже подойдет; 2) У вас должно быть достаточное количество PLA, чтобы напечатать все части. ABS не подойдет для этого проекта, так как он слишком мягкий. Вероятно, можете использовать PETG, но это не проверялось , так что делайте это на свой страх и риск; 3) Жестяная банка соответствующего размера (диаметр 100 мм, длина 145 мм). Предпочтительно банка должна иметь съемную крышку. Вы можете взять обычную банку (скажем, от кусочков ананаса), но тогда вам нужно будет сделать для нее металлическую крышку; 4) Лист из оцинкованного железа. Толщина 0,5 мм является оптимальной. Вы можете выбрать другую толщину, но у вас могут возникнуть трудности с изгибом или шлифовкой, поэтому будьте готовы. В любом случае Вам понадобится как минимум короткая лента из оцинкованного железа толщиной 0,5 мм, чтобы сделать проставку кожуха турбины. Подойдет 2 шт. Размером 200 х 30 мм; 5) Лист нержавеющей стали для изготовления колеса турбины, колеса NGV и кожуха турбины. Опять толщина 0,5 мм является оптимальной. 6) Твердый стальной стержень для изготовления вала турбины

Осторожно: мягкая сталь здесь просто не работает. Вам понадобится хотя бы немного углеродистой стали

Твердые сплавы будут еще лучше. Диаметр вала составляет 6 мм. Вы можете выбрать другой диаметр, но затем вам нужно будет найти подходящие материалы для изготовления ступицы; 7) 2 шт. 6х22 подшипники 626zz; 8) патрубки 1/2″ длиной 150 мм и два концевых фитинга; 9) сверлильный станок; 10) Точило 11) дремель (или что-то похожее) 12) Ножовка по металу, плоскогубцы, отвертку, плашку М6, ножницы, тиски и т. д .; 13) кусок трубы из меди или нержавеющей стали для распыления топлива; 14) Набор болтов, гаек, хомутов, виниловых трубок и прочего; 15) пропан или бутановая горелка

Если вы хотите запустить двигатель, вам также понадобятся:

16) Баллон с пропаном. Существуют бензиновые или керосиновые двигатели, но заставить их работать на этих видах топлива немного сложно. Лучше начать с пропана, а потом решить, хотите ли вы перейти на жидкое топливо или вы уже довольны газовым топливом; 17) Манометр, способный измерять давление в несколько мм водяного столба. 18) Цифровой тахометр для измерения оборотов турбины 19) Стартер. Для запуска реактивного двигателя можно использовать:Вентилятор (100 Вт или более). Лучше центробежный)электродвигатель (мощностью 100 Вт или более, 15000 об / мин; Вы можете использовать свой дремель здесь).

Что в итоге?

А в итоге у нас плохо работающие движки. Основная их проблема — неполное сгорание топливной смеси (о последствиях этого я писал выше). Также подкачала и скорость горения. И вот тут-то всплывает злополучная надпись N — 13,6% и K2O — 46% на упаковке селитры, потому что, скорее всего калиевая селитра для удобрений нечистая, и оставшиеся 40,4% это какие-нибудь примеси, которые и стали причиной плохой работы двигателей.

Если вы смотрели недавнюю серию роликов Амперки Ракета против Лехи, то вы заметили, что они использовали химически чистую калиевую селитру. Благодаря ей у них прогорело все топливо, да и скорость горения была выше (2,85 мм/сек против моих 1-1,25 мм/сек). Ну и еще одним минусом самодельных движков является то, что неизвестна их тяга, а я в будущем хотел бы рассчитывать параметры полета ракеты.

По итогу могу сделать вывод, что на калиевой селитре для удобрений движок не построишь. В общем, на такой грустной ноте я закончил разработку своих движков, и стал искать тех, кто делает и продает готовые движки.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector