Зависимость сопротивления металлических проводников от температуры. температурный коэффициент сопротивления
Содержание:
- Температурная зависимость ρ(Т)
- Сопротивление, проводимость и закон Ома
- Какие бывают резисторы?
- Расчет сопротивлений
- Удельное электрическое сопротивление
- Резисторы
- § 45. Расчёт сопротивления проводника. Удельное сопротивление
- Зависимость от свойств напряжения
- Основные электрические величины
- Влияние длины и сечения кабеля на потери по напряжению
- Типовые конструкции платиновых термосопротивлений
- Сопротивление и удельное сопротивление
Температурная зависимость ρ(Т)
Для большинства материалов проведены многочисленные эксперименты по измерению значений удельных сопротивлений. Данные по большинству проводников можно найти в справочных таблицах.
Удельное сопротивление металлов и сплавов, Ом*мм2/м
(при Т = 20С)
Серебро |
0,016 |
Бронза (сплав) |
0,1 |
Медь |
0,017 |
Олово |
0,12 |
Золото |
0,024 |
Сталь (сплав) |
0,12 |
Алюминий |
0,028 |
Свинец |
0,21 |
Иридий |
0,047 |
Никелин (сплав) |
0,42 |
Молибден |
0,054 |
Манганин (сплав) |
0,45 |
Вольфрам |
0,055 |
Константан (сплав) |
0,48 |
Цинк |
0,06 |
Титан |
0,58 |
Латунь (сплав) |
0,071 |
Ртуть |
0,958 |
Никель |
0,087 |
Нихром (сплав) |
1,1 |
Платина |
0,1 |
Висмут |
1,2 |
Чаще всего приводятся значения ρ при нормальной, то есть комнатной температуре 20С. Но оказалось, что при повышении температуры удельное сопротивление возрастает по линейному закону в соответствии с формулой:
$ ρ(Т) = ρ0 * (1 + α*T)$ (6),
где: ρ — удельное сопротивление проводника при температуре 0С, α — температурный коэффициент удельного сопротивления, который тоже имеет для каждого вещества свое, индивидуальное, значение. Из формулы (6) следует, что коэффициент α имеет размерность или .
Рис. 2. Температурная зависимость удельного сопротивления проводника
В соответствии с законом Джоуля-Ленца при протекании электрического тока т выделяется тепло, а значит происходит рост температуры проводника. Кроме этого, в зависимости от области применения, электрические приборы могут работать как при пониженных (минусовых), так и при высоких температурах. Для точных расчетов электрических цепей необходимо учитывать зависимость ρ(Т). Величину α для конкретного материала можно узнать из справочной литературы.
Рис. 3. Справочные значения температурного коэффициента удельного сопротивления проводников
Сопротивление, проводимость и закон Ома
Электрическое сопротивление – физическая величина, характеризующая способность проводника препятствовать прохождению по нему электрического тока.
Сопротивление часто обозначается через R или r и в Международной системе единиц (СИ) измеряется в Омах.
В зависимости от среды проводника и носителей зарядов, физическая природа сопротивления может отличаться. Так, например, в металле движущиеся под действием поля электроны рассеиваются на неоднородностях ионной решетки, теряют свой импульс, и энергия их движения преобразуется во внутреннюю энергию кристаллической решетки (то есть становится меньше).
Сопротивление проводника при прочих равных условиях зависит от его геометрии и от удельного электрического сопротивления материала, из которого он выполнен.
Сопротивление однородного проводника постоянного сечения зависит от свойств вещества проводника, его длины, сечения и определяется согласно зависимости
где ρ – удельное сопротивление вещества проводника, Ом·м, l — длина проводника, м, а S — площадь сечения, мм².
Удельное сопротивление ρ – скалярная физическая величина, численно равная сопротивлению однородного цилиндрического проводника единичной длины и единичной площади сечения (рисунок 1). При расчетах это значение выбирается из таблицы.
Рис. 1. Удельное сопротивление проводника, ρ
Сопротивление проводника R зависит от внешнего фактора – температуры T, но для разных групп веществ эта зависимость имеет различные зависимости. Так, при снижении температуры металлов их сопротивление снижается (то есть способность проводить ток увеличивается). Если температура металла достигает низких значений, он переходит в состояние так называемой свехрпроводимости и его сопротивление R стремится к 0. Поведение полупроводников под воздействием температур обратное – при снижении температуры T сопротивление R растет, а при его росте наоборот падает (рисунок 2).
Рис. 2. Зависимость сопротивления R от температуры T для металлов и полупроводников
Закон Ома
В 1826 году немецкий физик Георг Ом открыл важный в электронике закон, названный впоследствии его фамилией. Закон Ома определяет количественную зависимость между электрическим током и свойствами проводника, характеризующими его способность противостоять электрическому току.
Существует несколько интерпретаций закона Ома.
Закон Ома для участка цепи (рисунок 3) определяет величину электрического тока I в проводнике как отношение напряжения на концах проводника U и его сопротивления R
Рис. 3. Закон Ома для участка цепи
Интерпретировать закон Ома для участка цепи можно следующим образом: если к концам проводника сопротивлением R = 1 Ом приложено напряжение U = 1 В, тогда величина тока I в проводнике будет равна 1 А
На представленном выше простом примере разберем физическую интерпретацию закона Ома, используя аналогию электрического тока и воды. В качестве аналога проводника электрического тока возьмем воронку, сужение в которой возникает из-за наличие в проводнике сопротивления R (рисунок 4). Пусть в воронку из некоторого источника поступает вода, которая просачивается через узкое горлышко. Усилить поток воды на выходе горлышка воронки можно за счет давления на воду, например, силой поршня. В аналогии с электричеством, поршень будет являться аналогом напряжения – чем сильнее на воду давит поршень (то есть чем больше значение напряжения), тем сильнее будет поток воды на выходе из воронки (тем больше будет значение силы тока).
Рис. 4. Интерпретация закона Ома для участка цепи с использованием водной аналогии
Закон Ома может быть применен не всегда, а лишь в ограниченном числе случаев. Так закон Ома «не работает» при расчете напряжения и тока в полупроводниковых или электровакуумных приборов, содержащих нелинейные элементы. В этом случае зависимость тока и напряжения можно определить только с помощью построение так называемой вольтамперной характеристики (ВАХ). К категории нелинейных элементов относятся все без исключения полупроводниковые приборы (диоды, транзисторы, стабилитроны, тиристоры, варикапы и т.д.), а также электронные лампы.
Какие бывают резисторы?
Повсеместно встречаются резисторы совершенно разных конструкций. Все резисторы можно разделить на две категории по типу конструкции и по резистивному материалу. Рассмотрим обе категории.
Тип конструкции
Постоянные резисторы – как следует из названия, эти резисторы имеют постоянное сопротивление и точность, не зависящие от изменения температуры, освещенности и так далее.
Переменные резисторы – эти радиоэлементы обладают переменным сопротивлением. Потенциометр – великолепный пример такого резистора. У него есть регулятор, который можно вращать для увеличения или уменьшения сопротивления. Другие разновидности переменных резисторов – это подстроечный резистор и реостат.
Нелинейные резисторы – эти резисторы как хамелеоны, они могут изменять свое сопротивление в зависимости от той или иной физической величины, воздействующей на резистор – температуры, уровня освещенности и даже магнитного поля. Нелинейные резисторы – это термистор, фоторезистор, варистор и магниторезистор.
Резистивный материал
Все резисторы можно разбить на группы по материалам, из которых они изготовлены и которые в огромной степени влияют на их способность оказывать сопротивление электрическому току. Вот эти резисторы по используемым материалам:
-
Углеродистые композиционные резисторы;
-
Углеродистые пленочные резисторы;
-
Металлопленочные резисторы;
-
Тонко и толстопленочные резисторы;
-
Фольговые резисторы;
-
Проволочные резисторы.
Углеродистые композиционные резисторы – это резисторы, изготовленные по самой старой технологии, популярной в производстве резисторов малой точности. Их все еще можно найти в схемах, где могут быть импульсы высоких энергий.
Старый углеродистый пленочный резистор.
Такие резисторы все еще используются там, где точность не важна
Из всех вышеперечисленных типов резисторов по резистивному материалу старейшими являются проволочные резисторы. Их все еще можно встретить на старых печатных платах устройств большой мощности, в которых необходимо сопротивление, заданное с большой точностью. Эти древние резисторы широко известны благодаря тому, что большой надежностью обладают даже резисторы с малым сопротивлением.
Проволочный резистор – старейший и наиболее точный из доступных резисторов
Сегодня наиболее широко применяются металлопленочные и металлооксидные резисторы, они лучше всего обеспечивают с неизменной точностью номинальное сопротивление, а также меньше подвержены влиянию изменения температуры.
Наиболее широко применяемый металлооксидный резистор
обеспечивает неизменную точность номинального сопротивления
Расчет сопротивлений
Для вычисления величины нагрузочного сопротивления формулу, выведенную из закона Ома, используют, как основную, если известны значения тока и напряжения:
Единицей измерения является Ом.
Для последовательного соединения резисторов общее сопротивление находится путем суммирования отдельных значений:
R = R1 + R2 + R3 + …..
При параллельном соединении используется выражение:
1/R = 1/R1 + 1/R2 + 1/R3 + …
А как найти электрическое сопротивление для провода, учитывая его параметры и материал изготовления? Для этого существует другая формула сопротивления:
R = ρ х l/S, где:
- l – длина провода,
- S – размеры его поперечного сечения,
- ρ – удельное объемное сопротивление материала провода.
Data-lazy-type=»image» data-src=»https://elquanta.ru/wp-content/uploads/2018/03/2-1-600×417.png?.png 600w, https://elquanta.ru/wp-content/uploads/2018/03/2-1-768×533..png 792w» sizes=»(max-width: 600px) 100vw, 600px»>
Формула сопротивления
Геометрические размеры провода можно измерить. Но чтобы рассчитать сопротивление по этой формуле, надо знать коэффициент ρ.
Важно!
Значения уд. объемного сопротивления уже рассчитаны для разных материалов и сведены в специальные таблицы.
Значение коэффициента позволяет сравнивать сопротивление разных типов проводников при заданной температуре в соответствии с их физическими свойствами без учета размеров. Это можно проиллюстрировать на примерах.
Пример расчета электросопротивления медного провода, длиной 500 м:
- Если размеры сечения провода неизвестны, можно замерить его диаметр штангенциркулем. Допустим, это 1,6 мм;
- При расчетах площади сечения используется формула:
Тогда S = 3,14 х (1,6/2)² = 2 мм²;
- По таблице нашли значение ρ для меди, равное 0,0172 Ом х м/мм²;
- Теперь электросопротивление рассчитываемого проводника будет:
R = ρ х l/S = 0,0172 х 500/2 = 4,3 Ом.
Другой пример
–нихромовая проволока сечением 0,1 мм², длиной 1 м:
- Показатель ρ для нихрома – 1,1 Ом х м/мм²;
- R = ρ х l/S = 1,1 х 1/0,1 = 11 Ом.
На двух примерах наглядно видно, что нихромовая проволока метровой длины и сечением, в 20 раз меньшим, имеет электрическое сопротивление в 2,5 раза больше, чем 500 метров медного провода.
Jpg?.jpg 600w, https://elquanta.ru/wp-content/uploads/2018/03/3-6-768×381..jpg 960w» sizes=»(max-width: 600px) 100vw, 600px»>
Удельное сопротивление некоторых металлов
Важно!
На сопротивление оказывает влияние температура, с ростом которой оно увеличивается и, наоборот, уменьшается со снижением.
Удельное электрическое сопротивление
Экспериментальным методом было установлено, что сопротивление электрического тока проводника зависит от его размеров: длина, ширина, высота. А также от его формы (сфера, цилиндр) и материала, из которого он сделан. Таким образом, формула удельного сопротивления, например, однородного цилиндрического проводника будет: R = р*l/S.
Если в этой формуле положить s = 1 м2 и l = 1 м, то R численно будет равен р. Отсюда вычисляется единица измерения для коэффициента удельного сопротивления проводника в СИ — это Ом*м.
В формуле удельного сопротивления р — это коэффициент сопротивления, определяемый химическими свойствами материала, из которого изготовлен проводник.
Для рассмотрения дифференциальной формы закона Ома, необходимо рассмотреть еще несколько понятий.
Резисторы
Резистор — это прибор с постоянным сопротивлением, такая радиодеталь помогает контролировать напряжение в цепи, понижая либо увеличивая его. По-другому говоря, это искусственное препятствие для электротока. Трудно представить любое электронное устройство без резисторов — их используют в компьютерах, телевизорах, сигнализациях, радиоприемниках и т. д.
На общих схемах резисторы маркируют следующим образом:
Обозначение резистора на схеме
Диагональными линиями обозначают мощность резистора до 1 Вт. Вертикальные линии и знаки V и X (римские цифры) обозначают мощность резистора соответственно значению римской цифры.
§ 45. Расчёт сопротивления проводника. Удельное сопротивление
Мы знаем, что причиной электрического сопротивления проводника является взаимодействие электронов с ионами кристаллической решётки металла (§ 43). Поэтому можно предположить, что сопротивление проводника зависит от его длины и площади поперечного сечения, а также от вещества, из которого он изготовлен.
На рисунке 74 изображена установка для проведения такого опыта. В цепь источника тока по очереди включают различные проводники, например:
- никелиновые проволоки одинаковой толщины, но разной длины;
- никелиновые проволоки одинаковой длины, но разной толщины (разной площади поперечного сечения);
- никелиновую и нихромовую проволоки одинаковой длины и толщины.
Силу тока в цепи измеряют амперметром, напряжение — вольтметром.
Зная напряжение на концах проводника и силу тока в нём, по закону Ома можно определить сопротивление каждого из проводников.
Рис. 74. Зависимость сопротивления проводника от его размеров и рода вещества
Выполнив указанные опыты, мы установим, что:
- из двух никелиновых проволок одинаковой толщины более длинная проволока имеет большее сопротивление;
- из двух никелиновых проволок одинаковой длины большее сопротивление имеет проволока, поперечное сечение которой меньше;
- никелиновая и нихромовая проволоки одинаковых размеров имеют разное сопротивление.
Зависимость сопротивления проводника от его размеров и вещества, из которого изготовлен проводник, впервые на опытах изучил Ом. Он установил, что сопротивление прямо пропорционально длине проводника, обратно пропорционально площади его поперечного сечения и зависит от вещества проводника.
Как учесть зависимость сопротивления от вещества, из которого изготовляют проводник? Для этого вычисляют так называемое удельное сопротивление вещества.
Удельное сопротивление — это физическая величина, которая определяет сопротивление проводника из данного вещества длиной 1 м, площадью поперечного сечения 1 м2.
Введём буквенные обозначения: ρ — удельное сопротивление проводника, I — длина проводника, S — площадь его поперечного сечения. Тогда сопротивление проводника R выразится формулой
Из неё получим, что:
Из последней формулы можно определить единицу удельного сопротивления. Так как единицей сопротивления является 1 Ом, единицей площади поперечного сечения — 1 м2, а единицей длины — 1 м, то единицей удельного сопротивления будет:
Удобнее выражать площадь поперечного сечения проводника в квадратных миллиметpax, так как она чаще всего бывает небольшой. Тогда единицей удельного сопротивления будет:
В таблице 8 приведены значения удельных сопротивлений некоторых веществ при 20 °С. Удельное сопротивление с изменением температуры меняется. Опытным путём было установлено, что у металлов, например, удельное сопротивление с повышением температуры увеличивается.
Таблица 8. Удельное электрическое сопротивление некоторых веществ (при t = 20 °С)
Из всех металлов наименьшим удельным сопротивлением обладают серебро и медь. Следовательно, серебро и медь — лучшие проводники электричества.
При проводке электрических цепей используют алюминиевые, медные и железные провода.
Во многих случаях бывают нужны приборы, имеющие большое сопротивление. Их изготавливают из специально созданных сплавов — веществ с большим удельным сопротивлением. Например, как видно из таблицы 8, сплав нихром имеет удельное сопротивление почти в 40 раз большее, чем алюминий.
Фарфор и эбонит имеют такое большое удельное сопротивление, что почти совсем не проводят электрический ток, их используют в качестве изоляторов.
Вопросы
- Как зависит сопротивление проводника от его длины и от площади поперечного сечения?
- Как показать на опыте зависимость сопротивления проводника от его длины, площади поперечного сечения и вещества, из которого он изготовлен?
- Что называется удельным сопротивлением проводника?
- По какой формуле можно рассчитывать сопротивление проводников?
- В каких единицах выражается удельное сопротивление проводника?
- Из каких веществ изготавливают проводники, применяемые на практике?
Зависимость от свойств напряжения
Удельное сопротивление
После простого преобразования основной формулы можно составить корректное выражения для напряжения:
U = I * R.
Источник тока генерирует электричество. Подключенный резистор потребляет энергию с трансформацией в тепло. Для подержания определенной силы тока необходимо установить соответствующее напряжение.
Измерительная схема, графики
На графиках показаны вольтамперные характеристики разных приборов. Первые два демонстрируют линейные зависимости, в которых изменяется только угол наклона прямой линии (зависимость от электрического сопротивления резистора).
Если подключить полупроводниковый диод, график существенно изменится. По рисунку можно определить малое сопротивление в области положительных значений U. Однако после изменения полярности увеличение отрицательного напряжения не сопровождается аналогичным изменением силы тока. Одностороннюю проводимость, в частности, используют для выпрямления сигналов.
На последнем графике сдвинутая точка перехода нулевого значения силы тока обозначает ЭДС источника питания. Как и в предыдущем примере, небольшой угол по отношению к вертикали показывает малое внутреннее сопротивление АКБ.
Основные электрические величины
Рассмотрим основные электрические величины, которые мы изучаем сначала в школе, затем в средних и высших учебных заведениях. Все данные для удобства сведем в небольшую таблицу. После таблицы будут приведены определения отдельных величин, на случай возникновения каких-либо непониманий.
Величина | Единица измерения в СИ | Название электрической величины |
q | Кл — кулон | заряд |
R | Ом – ом | сопротивление |
U | В – вольт | напряжение |
I | А – ампер | Сила тока (электрический ток) |
C | Ф – фарад | Емкость |
L | Гн — генри | Индуктивность |
sigma | См — сименс | Удельная электрическая проводимость |
e0 | 8,85418781762039*10 -12 Ф/м | Электрическая постоянная |
φ | В – вольт | Потенциал точки электрического поля |
P | Вт – ватт | Мощность активная |
Q | Вар – вольт-ампер-реактивный | Мощность реактивная |
S | Ва – вольт-ампер | Мощность полная |
f | Гц — герц | Частота |
Существуют десятичные приставки, которые используются в названии величины и служат для упрощения описания. Самые распространенные из них: мега, мили, кило, нано, пико. В таблице приведены и остальные приставки, кроме названных.
Десятичный множитель | Произношение | Обозначение (русское/международное) |
10 -30 | куэкто | q |
10 -27 | ронто | r |
10 -24 | иокто | и/y |
10 -21 | зепто | з/z |
10 -18 | атто | a |
10 -15 | фемто | ф/f |
10 -12 | пико | п/p |
10 -9 | нано | н/n |
10 -6 | микро | мк/μ |
10 -3 | милли | м/m |
10 -2 | санти | c |
10 -1 | деци | д/d |
10 1 | дека | да/da |
10 2 | гекто | г/h |
10 3 | кило | к/k |
10 6 | мега | M |
10 9 | гига | Г/G |
10 12 | тера | T |
10 15 | пета | П/P |
10 18 | экза | Э/E |
10 21 | зета | З/Z |
10 24 | йотта | И/Y |
10 27 | ронна | R |
10 30 | куэкка | Q |
Сила тока в 1А – это величина, равная отношению заряда в 1 Кл, прошедшего за 1с времени через поверхность (проводник), к времени прохождения заряда через поверхность. Для протекания тока необходимо, чтобы цепь была замкнутой.
Сила тока измеряется в амперах. 1А=1Кл/1c
В практике встречаются
Электрическое напряжение – разность потенциалов между двумя точками электрического поля. Величина электрического потенциала измеряется в вольтах, следовательно, и напряжение измеряется в вольтах (В).
1Вольт – напряжение, которое необходимо для выделения в проводнике энергии в 1Ватт при протекании по нему тока силой в 1Ампер.
В практике встречаются
Электрическое сопротивление – характеристика проводника препятствовать протеканию по нему электрического тока. Определяется как отношение напряжения на концах проводника к силе тока в нем. Измеряется в омах (Ом). В некоторых пределах величина постоянная.
1Ом – сопротивление проводника при протекании по нему постоянного тока силой 1А и возникающем при этом на концах напряжении в 1В.
Из школьного курса физики все мы помним формулу для однородного проводника постоянного сечения:
R=ρlS – сопротивление такого проводника зависит от сечения S и длины l
где ρ – удельное сопротивление материала проводника, табличная величина.
Между тремя вышеописанными величинами существует закон Ома для цепи постоянного тока.
Ток в цепи прямо пропорционален величине напряжения в цепи и обратно пропорционален величине сопротивления цепи – закон Ома.
Электрической емкостью называется способность проводника накапливать электрический заряд.
Емкость измеряется в фарадах (1Ф).
1Ф – это емкость конденсатора между обкладками которого возникает напряжение 1В при заряде в 1Кл.
В практике встречаются
Индуктивность – это величина, характеризующая способность контура, по которому протекает электрический ток, создавать и накапливать магнитное поле.
Индуктивность измеряется в генри.
1Гн – величина, равная ЭДС самоиндукции, возникающей при изменении величины тока в контуре на 1А в течение 1секунды.
В практике встречаются
Электрическая проводимость – величина, показывающая способность тела проводить электрический ток. Обратная величина сопротивлению.
Электропроводность измеряется в сименсах.
Источник
Влияние длины и сечения кабеля на потери по напряжению
Потери электроэнергии – неизбежная плата за ее транспортировку по проводам, вне зависимости от длины передающей линии. Существуют они и на воздушных линиях электропередач длиною в сотни километров и на отрезках электропроводки в несколько десятков метров домашней электрической сети. Происходят они, прежде всего потому, что любые провода имеют конечное сопротивление электрическому току. Закон Ома, с которым каждый из нас имел возможность познакомиться на школьных уроках физики, гласит, что напряжение (U) связано с током (I) и сопротивлением (R) следующим выражением:
U = I·R,
из него следует что чем выше сопротивление проводника, тем больше на нем падение (потери) напряжения при постоянных значениях тока. Это напряжение приводит к нагреву проводников, который может грозить плавлением изоляции, коротким замыканием и возгоранием электропроводки.
При передаче электроэнергии на большие расстояния потерь удается избегать за счет снижения силы передаваемого тока, достигается это многократным повышением напряжения до сотен киловольт. В случае низковольтных сетей, напряжением 220 (380) В, потери можно минимизировать только выбором правильного сечения кабеля.
Почему падает напряжение и как это зависит от длины и сечения проводников
Для начала остановимся на простом житейском примере частного сектора в черте города или большого поселка, в центре которого находится трансформаторная подстанция.
Жильцы домов, расположенных в непосредственной близости к ней жалуются на постоянную замену быстро перегорающих лампочек, что вполне закономерно, ведь напряжение в их сети достигает 250 В и выше.
Конкретизируем, от чего зависит величина сопротивления проводника на примере медных проводов, которым сегодня отдается предпочтение. Для этого опять вернемся к школьному курсу физики, из которого известно, что сопротивление проводника зависит от трех величин:
- удельного сопротивления материала – ρ;
- длины отрезка проводника – l;
- площади поперечного сечения (при условии, что по всей длине оно одинаковое) – S.
- Все четыре параметра связывает следующее соотношение:
- R = ρ·l/S,
- очевидно, что сопротивление растет по мере увеличения длины проводника и падает по мере увеличения сечения жилы.
Для медных проводников удельное сопротивление составляет 0.0175 Ом·мм²/м, это значит, что километр медного провода сечением 1 мм² будет иметь сопротивление 17.5 Ом, в реальной ситуации оно может отличаться, например, из-за чистоты металла (наличия в сплаве примесей).
Для алюминиевых проводников величина сопротивления еще выше, поскольку удельное сопротивление алюминиевых проводов составляет 0.028 Ом·мм²/м.
Теперь вернемся к нашему примеру. Пусть от подстанции до самого крайнего дома расстояние составляет 1 км и электропитание напряжения 220 вольт до него проложено алюминиевым проводом марки А, с минимальным сечением 10 мм².
Расстояние, которое необходимо пройти электрическому току складывается из длины нулевых и фазных проводов, то есть в нашем примере необходимо применить коэффициент 2, таким образом максимальная длина составит 2000 м.
Подставляя наши значения в последнюю формулу, получим величину сопротивления равную 5.6 Ом.
Много это или мало, понятно из упомянутого выше закона Ома, так для потребителя с номинальным током всего 10 ампер, в приведенном примере падение напряжения составит 56 В, которые уйдут на обогрев улицы.
Конечно же, если нельзя уменьшить расстояние, следует выбрать сечение проводов большей площади, это касается и внутренних проводок, однако это ведет к увеличению затрат на кабельно-проводниковую продукцию. Оптимальным решением будет правильно рассчитать сечения проводов, учитывая максимальную допустимую нагрузку.
Классификация помещений по степени опасности
Подробнее…
Что такое гармоники в электричестве
На практике синусоидальные напряжения электрических сетей подвержены искажениям и вместо идеальной синусоиды на экране осциллографа мы видим искаженный, испещренный провалами, зазубринами и всплесками сигнал. Эти искажения следствие влияния гармоник – паразитных колебаний кратных основной частоте сигнала, вызванных включением в сеть нелинейных нагрузок.
Подробнее…
Типовые конструкции платиновых термосопротивлений
Производители применяют различные инженерные решения при выпуске продукции этой категории. Для уточнения на стадии сравнения можно изучить официальную сопроводительную документацию либо запросить необходимые данные на сайте компании.
Типовые конструкции ТС
№ | Наименование | Основные данные | Особенности |
1 | Strain-free | Основной элемент освобожден от нагрузок порошковой засыпкой из оксида алюминия | Разным цветом глазури, герметизирующей торцевую часть, обозначают соответствие определенному температурному диапазону |
2 | Hollow nnulus | Рабочий проводник наматывается на полый цилиндр | Материалы конструкции подбирают с учетом коэффициентов теплового расширения |
3 | Thin-film | Из металла формируют тонкий слой на изоляторе (керамической основе) | Эта модель отличается быстродействием, высокой чувствительностью |
4 | Проволока в стеклянной оболочке | В такой конструкции обеспечиваются идеальная герметизация проводника, надежная защита от внешних воздействий | Подобные решения используют для изготовления дорогих серий датчиков, которые рассчитаны на сложные условия эксплуатации |
Типичные конструкции датчиков из платины
Сопротивление и удельное сопротивление
Сопротивление – электрическое свойство, создающее препятствия течению. Перемещающийся по проводу ток напоминает воду, текущую в трубе, а падение напряжения – перепад давления. Сопротивление выступает пропорциональным давлению, которое нужно для формирования конкретного потока, а проводимость пропорциональна скорости потока. Проводимость и сопротивление выступают соотносимыми.
Сопротивление основывается на форме и материале объекта. Легче всего рассматривать цилиндрический резистор и уже от него переходить к сложным формам. Электрическое сопротивление цилиндра (R) будет прямо пропорциональным длине (L). Чем длиннее, тем больше столкновений будет происходить с атомами.
Единый цилиндр с длиной (L) и площадью поперечного сечения (А). Сопротивление потоку тока аналогично сопротивлению жидкости в трубе. Чем длиннее цилиндр, тем сильнее сопротивление. А вот с ростом площади поперечного сечения уменьшается сопротивление
Разные материалы гарантируют различное сопротивление. Определим удельное сопротивление (p) вещества так, чтобы сопротивление (R) было прямо пропорциональным p. Если удельное выступает неотъемлемым свойством, то простое сопротивление – внешнее.
Типичный осевой резистор
Что определяет удельное сопротивление проводника? Сопротивление в зависимости от материала может сильно отличаться. Например, у тефлона проводимость в 1030 раз ниже, чем показатель меди. Откуда такое отличие? У металла наблюдается огромное количество делокализованных электронов, которые не задерживаются в конкретном месте, а свободно путешествуют на большие дистанции. Однако в изоляторе (тефлон) электроны тесно связаны с атомами и нужна серьезная сила, чтобы оторвать их. В некоторых керамических изоляторах можно встретить сопротивление больше 1012 Ом. У сухого человека – 105 Ом.
Разность напряжения в сети отображает сумму всех напряжений и общее сопротивление передается формулой:
Req = R1 + R2 + ⋯ + RN.
Резисторы в параллельной конфигурации проходят сквозь одинаковую разность напряжения. Поэтому можно вычислить эквивалентное сопротивление сети:
1/Req = 1/R1 + 1/R2 + ⋯ + 1/RN.
Параллельное эквивалентное сопротивление можно представить в формуле двумя вертикальными линиями или слешем (//). Например:
Каждое сопротивление R задается как R/N. Резисторная сеть отображает комбинацию параллельных и последовательных соединений. Ее можно разбить на более мелкие составляющие.
Эту комбинированную схему можно разбить на последовательные и параллельные компоненты
Некоторые сложные сети нельзя рассмотреть таким способом. Но нестандартное значение сопротивления можно синтезировать, если объединить несколько стандартных показателей последовательно и параллельно. Это также можно использовать для получения сопротивления с более высокой номинальной мощностью, чем у отдельных резисторов. В конкретном случае все резисторы подключены последовательно или параллельно и номинал индивидуальных умножается на N.
Обзор
Электрический ток
Батарея
Измерения тока и напряжения в цепях
Микроскопический вид: скорость дрейфа
Сопротивление и резисторы
Закон Ома
Температура и сверхпроводимость
Сопротивление и удельное сопротивление
Зависимость сопротивления от температуры
Электрическая энергия и энергия
Переменные токи
Фазоры
Средниеквадратное значение корня
Меры предосторожности в домашнем хозяйстве
Электричество в мире
Люди и электрическая опасность
Проводимость нервов и электрокардиограммы
Электрическая активность в сердце