Что такое лямбда зонд (датчик кислорода)

ВЛИЯНИЕ НЕИСПРАВНОСТИ КИСЛОРОДНОГО ДАТЧИКА ЛЯМБДА: ПРИЧИНА ОТКАЗА

Существует несколько причин, по которым лямбда датчик может выйти из строя:

  • Внутренние и внешние замыкания лямбда зонда.
  • Нет заземления / напряжения.
  • Перегрев зонда.
  • Нагар / загрязнение.
  • Механическое повреждение датчика
  • Использование этилированного топлива / присадок

Существует ряд типичных неисправностей лямбда-датчиков, которые происходят наиболее. В следующем списке приведены причины неисправностей выявленных в результате диагностики:

Неисправности лямбда датчика Причины
Защитная трубка или корпус зонда забиты остатками масла Несгоревшее масло попало в выхлопную систему, например, из-за неисправных поршневых колец или маслосъёмных колпачков
Нет доступа к эталонному воздуху, воздух не поступает. Зонд установлен неправильно, контрольное отверстие для воздуха заблокировано
Повреждение в результате перегрева Температура превысила 950 °C из-за неправильно выставленного зажигания или проблемы с регулировкой клапанов
Плохое соединение на контактах Окисление проводов датчика
Обрыв проводки Плохо проложенные провода, перетирание кабеля, укусы грызунов
Отсутствие заземления Окисление, коррозия в выхлопной системе
Механические повреждения При установке перетянут датчик. Момент затяжки превышен.
Химическое старение Частые непродолжительные поездки
Свинцовые отложения Использование этилированного топлива

Диагностика неисправностей для датчика кислорода Лямбда: основные принципы

Автомобили, оснащенные системой самодиагностики, могут обнаруживать неисправности, возникающие в цепи управления, и сохранять их в памяти неисправностей. Обычно это отображается через индикаторную лампу двигателя – «чек», «check engine». Память неисправностей затем может быть считана с помощью сканера через разъём OBD-2. Однако некоторые системы не могут определить, относится ли эта неисправность к неисправному датчику или это неисправность кабеля. В таком случае дальнейшие испытания должны быть выполнены механиком в автосервисе.

Для более точной диагностики через EOBD, мониторинг при компьютерной диагностике лямбда-датчика был расширен, чтобы считывать следующие пункты диагностики:

  • Разомкнутая цепь;
  • Эксплуатационная готовность;
  • Короткое замыкание на массу блока управления;
  • Короткое замыкание на плюс;
  • Обрыв кабеля и срок службы датчика кислорода лямбда.

Для диагностики сигналов от лямбда-датчика блок управления использует форму частоты сигнала. Для этого блок управления рассчитывает следующие данные:

  • Максимальное и минимальное обнаруженное значение напряжения датчика кислорода;
  • Время между положительным и отрицательным положением,
  • Лямбда-контроллер, регулирующий соотношение в топливо-воздушной смеси – богатая или бедная;
  • Определение порога лямбда-контроля,
  • Напряжение датчика и длительность периода.

О чем говорят максимальные и минимальные напряжения датчика кислорода?

При запуске двигателя все старые максимальные / минимальные значения в электронном блоке управления удаляются. Во время работы минимальные / максимальные значения отображаются в определенном диапазоне нагрузки / скорости

Амплитуда напряжения датчика: максимальное и минимальное значение больше не достигается, обнаружение насыщенности / обеднения топливной смеси больше невозможно.

Время отклика на изменение напряжения

Если напряжение датчика превышает контрольный порог, начинается измерение времени реакции между положительным и отрицательным состоянием. Если напряжение датчика не достигает контрольного порога, измерение времени прекращается. Период времени между началом и концом измерения времени измеряется счетчиком.

Время отклика: если датчик реагирует слишком медленно на изменение состава смеси то не отображает состояние в нужное время.

Определение старого или загрязненного лямбда зонда

Кислородный датчик может быть неисправенесли он старый, выработал ресурс или загрязнен, например, присадками к топливу. Это можно определить при диагностике зонда. Сигнал лямбда зонда сравнивается с сохраненным шаблоном. Медленный зонд определяется как неисправность, например, через длительность периода сигнала.

Время отклика: частота зонда слишком низкая, оптимальное управление больше невозможно.

Немного о конструкции и принципе работы

Несмотря на то что данный датчик должен определять количество кислорода в выхлопных газах, устроен он не так уж и сложно и имеет малые габариты.

Основными рабочими элементами его являются два электрода – внешний и внутренний.

Чтобы обеспечить высокую чувствительность к молекулам кислорода, внешний электрод имеет напыление из платины.

Второй электрод является гальваническим элементом и выполнен из циркония.

Особенностью этого электрода является то, что рабочая температура, при которой он вступает в работу должна быть не менее 300 град.

Платина легко улавливает молекулы кислорода, при этом напряжение самого электрода меняется.

Разность напряжения между электродами электронный блок интерпретирует в процентные значения остатка кислорода.

Производятся два типа лямбда зондов, хотя внешне они не отличаются. Один из видов называется двухточечным – это сравнительно простой датчик, который способен только уловить отклонение количества кислорода от номинального значения.

Сейчасчитают Стук при повороте руля, причины и способы их устранения

40.6k

Генератор дает перезаряд на аккумулятор, причины и способы их устранения

78k

Второй – широкополосные зонды, которые способны уже определить отклонение в процентном соотношении, что положительно сказывается на работе электронного блока, и как следствие самого двигателя.

Автомобили, оснащенные катализатором, укомплектовываются двумя лямбда зондами – один снимает показания до катализатора, а второй – после.

На основе результатов показаний электронный блок определяет работоспособность катализатора.

Это коротко об устройстве кислородного датчика и его принципе действия.

Датчик температуры выхлопных газов

200911- -201011 до сажевого фильтра

Длина кабеля : 601

Поиск

200911- -201011 за сажевым фильтром

Длина кабеля : 456

Поиск

за сажевым фильтром

Длина кабеля : 450 Количество присоединений: 2

Поиск

за сажевым фильтром

Поиск

до сажевого фильтра

Длина кабеля : 600 Количество присоединений: 2

Поиск

Длина кабеля : 500 Монтажная глубина : 40

Поиск

Длина кабеля : 500 Монтажная глубина : 40

Поиск

Длина кабеля : 650 Монтажная глубина : 40

Поиск

Длина кабеля : 650 Монтажная глубина : 40

Поиск

Длина кабеля : 680 Монтажная глубина : 40

Поиск

Длина кабеля : 680 Монтажная глубина : 40

Поиск

Длина кабеля : 660 Монтажная глубина : 32

Поиск

до сажевого фильтра

Угол наклона при встраивании: 100

Поиск

за сажевым фильтром

Поиск

до сажевого фильтра
Поиск

за сажевым фильтром
Поиск

Код двигателя: CBAB до сажевого фильтра

закреплено болтами / шурупами Количество полюсов: 2 Длина кабеля : 595

Поиск

Код двигателя: CBAB за сажевым фильтром

закреплено болтами / шурупами Количество полюсов: 2 Длина кабеля : 455

Поиск

Код двигателя: CBAB до сажевого фильтра

закреплено болтами / шурупами Количество полюсов: 2 Длина кабеля : 640

Поиск

Код двигателя: CBAB за сажевым фильтром

закреплено болтами / шурупами Количество полюсов: 2 Длина кабеля : 500

Поиск

Код двигателя: CBAB

коленчатый Количество полюсов: 2 D-форма коричневый Длина кабеля : 600

Поиск

Код двигателя: CBAB

коленчатый Количество полюсов: 2 D-форма коричневый Длина кабеля : 600

Поиск

-201011 Код двигателя: CBAB

прямой Количество полюсов: 2 D-форма коричневый Длина кабеля : 460

Поиск

-201011 Код двигателя: CBAB

прямой Количество полюсов: 2 D-форма коричневый Длина кабеля : 460

Поиск

201011- Код двигателя: CFFB до сажевого фильтра

коленчатый Количество полюсов: 2 D-форма коричневый Длина кабеля : 660

Поиск

201011- Код двигателя: CFFB за сажевым фильтром

прямой Количество полюсов: 2 D-форма коричневый Длина кабеля : 430 Общая длина : 600

Поиск

Код двигателя: CBAB, CFFB снизу

изогнутый Количество полюсов: 2 D-форма черный Длина кабеля : 660 для турбокомпрессора

Поиск

Код двигателя: CBAB, CFFB снизу

изогнутый Количество полюсов: 2 D-форма черный Длина кабеля : 660 для турбокомпрессора

Поиск

-201011 Код двигателя: CBAB

прямой Количество полюсов: 2 D-форма Длина кабеля : 455 Общая длина : 610 за сажевым фильтром

Поиск

Код двигателя: CFFB

Количество полюсов: 2 D-форма с кабелем Проводка на AGR-клапан

Поиск

Код двигателя: CBAB за сажевым фильтром

Количество полюсов: 2

Поиск

Код двигателя: CBAB, CFFB за сажевым фильтром

Поиск

-201112 снизу для турбокомпрессора

Поиск

-201112 до сажевого фильтра

Поиск

-201112 за сажевым фильтром

Поиск

электрический Напряжение : 12 Количество присоединений: 2 Длина кабеля : 710 Размер резьбы: M14 x 1,5 mm до сажевого фильтра
Поиск

электрический Напряжение : 12 Количество присоединений: 2 Длина кабеля : 565 Размер резьбы: M14 x 1,5 mm за сажевым фильтром
Поиск

Код двигателя: CBAB

Количество полюсов: 2 до сажевого фильтра

Поиск

Код двигателя: CBAB

с изолирующей волоконной оплёткой с силиконовым покрытием Общая длина : 780 Напряжение : 5 коричневый Размер резьбы: M14 x 1,5 согнутый Момент затяжки : 45 Длина кабеля : 650, 644 PTC-Датчик Количество полюсов: 2 коричневый овал область температуры от : -40 Диапазон температуры до : 900

Поиск

Код двигателя: CBAB за сажевым фильтром

Размер резьбы: M14 x 1,5 Общая длина : 600 прямой коричневый D-форма Количество полюсов: 2 Момент затяжки : 45 Длина кабеля : 500 PTC-Датчик область температуры от : -40 Диапазон температуры до : 900

Поиск

с теплоизолирующей гибкой трубкой черный Размер резьбы: M14 x 1,5 изогнутый Момент затяжки : 45 NTC – Датчик Количество полюсов: 2 D-форма область температуры от : -40 Диапазон температуры до : 900

Поиск

201011- Код двигателя: CFFB до сажевого фильтра

Г-образный коричневый D-форма Количество полюсов: 2 Момент затяжки : 45 Длина кабеля : 673 NTC – Датчик область температуры от : -40 Диапазон температуры до : 900

Поиск

D-форма прямой коричневый Момент затяжки : 45 Длина кабеля : 513 NTC – Датчик Количество полюсов: 2 область температуры от : -40 Диапазон температуры до : 900

Поиск

Функции и принцип действия датчика лямбда.

Для обеспечения идеального коэффициента конверсии каталитического нейтрализатора требуется обеспечить оптимальное сгорание топливо-воздушной смеси. В случае бензинового двигателя это достигается при соотношении воздух-топливо, равном 14,7 кг воздуха на 1 кг топлива, такой состав называется стехиометрическая топливная смесь.

Стехиометрическая смесь — это состав смеси в таких пропорциях топлива и воздуха, при которых происходит полное сгорание смеси без остатка избыточного кислорода. Теоретический коэффициент избытка воздуха топливной стехиометрической смеси равен единице.

Эта оптимальная смесь обозначается греческой буквой λ (лямбда). Лямбда используется для выражения соотношения воздуха между теоретическим потреблением воздуха и фактическим потоком воздуха:

λ = поток подаваемого воздуха: теоретический поток воздуха равен единице.

λ = 14,7 кг: 14,7 кг = 1

Принцип лямбда-датчика основан на измерении сравнения кислорода. Это означает, что оставшееся содержание кислорода в выхлопных газах (приблизительно 0,3–3%) сравнивается с содержанием кислорода в окружающем воздухе (около 20,8%).

Если остаточное содержание кислорода в выхлопных газах составляет 3% (обедненная смесь), возникает напряжение 0,1 V из-за разницы по сравнению с содержанием кислорода в окружающем воздухе.

Если оставшееся содержание кислорода составляет менее 3% (богатая смесь), напряжение датчика возрастает до 0,9 V пропорционально увеличению разницы. Содержание оставшегося кислорода измеряется с помощью нескольких лямбда-зондов.

Исправность лямбда-зондов обычно проверяют во время испытания на выбросы выхлопных газов. Поскольку он подвержен определенному износу, его следует регулярно проверять, чтобы убедиться, что он работает должным образом.

Как часто нужно проверять лямбда-зонд? Ответ: приблизительно каждые 30 000 км, например, при проведении техобслуживания в автосервисе.

За ужесточением законов, направленных на сокращение выбросов выхлопных газов, последовало усовершенствование технологии последующей обработки выхлопных газов.

Как работает лямбда зонд

Тут тоже много заблуждений. Даже Википедия дает не совсем корректную информацию. Вот цитата:”Лямбда-зонд

(λ-зонд ) — датчик остаточного кислорода. Позволяет оценивать количество оставшегося несгоревшего топлива либо кислорода в выхлопных газах.”

Получилось два предложения, которые противоречат друг другу и ещё больше запутывают начинающих автомобилистов.

Так что он оценивает? Остаточный кислород? Или остаточное несгоревшее топливо?

На самом деле лямбда зонд понятия не имеет сколько там несгоревшего топлива! Потому что он предназначен не для этого. И даже не для определения количества остаточного кислорода в выхлопных газах.

Он всего лишь сравнивает количество кислорода в выхлопных газах с количеством кислорода в окружающей среде в том месте, где находится автомобиль. Ведь мы знаем, что количество кислорода в окружающей среде не везде одинаково.

В общем, на простом языке – Лямбда зонд сравнивает количество кислорода в окружающей среде с количеством кислорода в выхлопных газах! По этой разности можно судить сколько кислорода сгорело в камере сгорания двигателя. Если кислорода в выхлопных газах много, значит смесь была обеднена и в следующем цикле ЭБУ прибавит топлива, чтобы сгорело больше кислорода.

Этот цикл повторяется постоянно и топливовоздушная смесь благодаря этому находится в районе стехиометрии. Именно в РАЙОНЕ стехиометрии – чуть выше, чуть ниже, чуть выше, чуть ниже. На графиках это выглядит как пила

Посредине этой пилы, как раз и есть стехиометрия. Именно по этому сигналу происходит топливная коррекция и выглядит она, естественно, тоже, как пила

Как видим, блок управления двигателем выполняет топливные коррекции строго по сигналу лямбда зонда. Всё как бы в зеркальном отражении – сигнал лямбда зонда вниз (обеднённая смесь), а коррекции сразу вверх (поддать топлива). И так происходит бесконечно, пока необходима смесь, близкая к стехиометрии.

Думаю, должно быть понятно.

Но ещё раз подчеркну, что лямбда зонд не видит топлива, он видит только кислород! Поэтому он и называется датчиком кислорода! Естественно, он никак не может определить несгоревшее топливо. Никак! Он для этого не предназначен.

Почему так важно это понимать?

Представьте ситуацию, если на авто прогорит прокладка выпускного коллектора. Так как выхлопные газы имеют пульсирующий характер, то через эту прокладку будут не только выходить выхлопные газы, но и засасываться воздух из окружающей среды. Лямбда зонд, естественно, увидит этот кислород и сообщит об этом. ЭБУ неизбежно определит, что смесь слишком обеднена и загонит коррекции далеко в плюс, добавляя топлива. Но лямбда зонд не умеет определять топливо, он видит только кислород! И сообщает только о большом количестве кислорода! ЭБУ в этой ситуации будет добавлять топливо до того момента, пока коррекции не дойдут до своего крайнего значения. В этот момент вылезет ошибка о бедной смеси и невозможности блока управления исправить ситуацию своими силами и он просит о помощи человека разобраться в этой проблеме.

Первые промежуточные выводы: Лямбда зонд установлен в систему управления двигателем для поддержания топливовоздушной смеси в районе стехиометрии для полноценной работы катализатора и сравнивает содержание кислорода в выхлопных газах с содержанием кислорода в окружающей среде. Исключительно кислорода!

Роль кислородного датчика в системе топливоподачи

Горение углеводородного топлива – бензина и солярки – в цилиндрах двигателя – процесс довольно сложный. Задачи электронного блока управления состоят в следующем:

  • эффективно сжигать горючее и добиваться максимального КПД силового агрегата;
  • обеспечить минимальный расход бензина;
  • изменять количество подаваемого топлива в зависимости от режима работы мотора.

Для полного сжигания бензина в цилиндрах двигателя его нужно смешать с воздухом в соотношении 1 : 14,7. Тогда практически все молекулы углерода подвергнутся окислению и образуют безвредный углекислый газ СО2, а водород после соединения с кислородом превратится в обычную воду (выделяется в виде пара). Не догоревший углерод тоже объединяется с кислородными частицами и дает на выходе угарный газ – СО. При правильной работе системы его доля невелика и составляет 1–1,5%.

Чтобы контроллер готовил оптимальную топливовоздушную смесь, он должен контролировать полноту ее сжигания. Тут и вступает в игру лямбда – зонд, который нужен для измерения количества свободного кислорода в выхлопе автомобиля и передачи информации в виде электрических импульсов на ЭБУ. Последний, сопоставив ее с показаниями других измерителей, отдает соответствующую команду форсункам.

Что дает измерение количества кислорода в выхлопных газах:

  • Если на выходе двигателя слишком мало кислородных молекул, то в топливной смеси явно не хватает воздуха – она слишком обогащенная.
  • И наоборот, превышение нормы указывает на бедную смесь в цилиндрах. При ее сжигании остается много воздуха, удаляемого вместе с выхлопом.

Блок управления отвечает за качество топливовоздушной смеси и корректирует соотношение компонентов по сигналам лямбда – зонда. Вот зачем нужен кислородный датчик в машинах, оборудованных инжектором.

Признаки, причины и устранение неисправностей лямбда зонда при проверке осмотром его состояния:

  1. Защитный кожух лямбда зонда сильно закопчен сажей
    Причина:
    Двигатель работает на слишком богатой смесиУстранение: Необходимо заменить зонд и устранить причину чрезмерно богатой смеси, чтобы предотвратить повторное загрязнение зонда.
  2. Блестящие депозиты на защитной трубе
    Причина:
    Использование этилированного топливаУстранение: Свинец разрушает элемент зонда. Необходимо заменить датчик и проверить каталитический нейтрализатор. Замените этилированное топливо неэтилированным топливом. Выясните какие АЗС на пути регулярных поездок продают качественное топливо.
  3. Налет белого или серого цвета на датчике кислородаПричина: Двигатель сжигает масло, дополнительные присадки в топливе.Устранение: Необходимо заменить зонд и устранить причину сгорания масла.
  4. Неправильная установка лямбда зонда
    Причина:
    Недостаточно опыта, не читал инструкцию, кривые руки. Во время монтажа необходимо использовать предписанный специальный инструмент и соблюдать момент затяжки.
    Устранение:
    Заменить лямбда датчик на новый или рабочий.

6. Проверка функции нагрева лямбда зонда. Устранение неисправности.

Для проверки нагревательного элемента питания лямбда зонда можно проверить внутреннее сопротивление и напряжение питания.

Для этого отсоедините разъем от лямбда-датчика. Со стороны лямбда-датчика используйте омметр для измерения сопротивления на обоих проводах нагревательного элемента. Сопротивление должно быть от 2 до 14 Ом. На стороне автомобиля используйте вольтметр для измерения напряжения питания. Напряжение должно быть больше 10,5 V (бортовое напряжение).

При обнаружении обрыва цепи устраните неисправность. Ниже приведена таблица назначения проводов и цвета проводов датчиков лямбда в зависимости от типа.

Как написать букву лямбда в ворде

Сегодня поговорим об одной замечательной особенности, о которой знают довольно малое количество пользователей ПК. Это может вызвать удивление, но уже немало насмотрелся, как для простого копирования, которое выполняется с помощью комбинации клавиш Ctrl-C, люди изгаляются через выделение нужного фрагмента (чаще слова) мышкой, затем жмут правую клавишу и выбирают пункт «копировать». Альтернативный вариант — копирование через кнопку, расположенную на панели инструментов.

Как обычно происходит вставка в текст символов, отсутствующих на клавиатуре в явном виде? Вызывается программа «Таблица символов» ( Win+R → charmap → Enter ), там долго и упорно ищется нужный символ, который и добавляется. Минус у такого решения, пожалуй, один — слишком долго искать нужно. Не спорю, порой попадаются действительно «непечатаемые знаки», но в обычно этого не требуется.

Для набора Alt кода следует зажать клавишу Alt (удивлены?) и на цифровой клавиатуре (той, что справа, за стрелками) нажать поочерёдно указанные цифры, после клавиша Alt отпускается. Проблемы могут возникнуть с укороченными клавиатурами, что свойственно для ноутбуков. В таком случае, как правило, нужно дополнительно зажать синюю клавишу Fn.

В таблице ниже попытался собрать самые необходимые символы, дополненные потенциально полезными. Помимо Alt кодов приведены и HTML мнемоники.

Мненимоника — конструкция, кодирующая спецсимволы определённым образом. Имеет вид: &обозначение; — амперсанд+обозначение+точка-с-запятой .

Пояснения по поводу подписей «для ru» и «для en». Это текущий, активный, язык ввода. Как правило, дефолтное переключение назначено на сочетание клавиш Alt+Shift.

Лямбда — 11-я буква греческого алфавита (использовалась также в коптском). В ионийской системе счисления соответствовала значению 30. Произошла от финикийской буквы Ламд. От самой лямбды произошли многие буквы, такие как L или Л.

Строчная лямбда широко используется в научной нотации. Лямбдой обозначается длина волны, постоянная распада, удельная теплота плавления, плотность заряда, а также многие другие переменные. λ-зонд — датчик остаточного кислорода в выхлопных газах. λ-фаг — название одного из бактериофагов.

Этот текст также доступен на следующих языках: English;

В программе ворд можно поставить разнообразные символы, в т.ч. лямбду. Так как с её написанием нередко возникают вопросы, то рассмотрим подробную инструкцию, как написать лямбду в программе ворд.

Первый шаг. Выберем на листе место, куда поставим символ лямбды, после перейдем на верхней панели настроек в закладку «Вставка» и нажмем в блоке «Символы» на иконку с аналогичным названием.

Второй шаг. В появившемся меню, нажмите на самую последнюю строчку «Другие символы».

Третий шаг. Появится подробное меню выбора различных символов, в строке набор из выпадающего списка, необходимо выбрать «греческие и коптские символы». Там можно найти маленькую и большую лямбду.

В итоге мы поставили в программе символы лямбда.

Некоторые пользователи вставляют символы через коды. Чтобы поставить символ большая лямбда, нужно вести код «039B», а для маленькой «03BB». Для преобразования кода в символ, поле его введения, нужно нажать сочетания клавиш «ALT+X».

Лямбда — 11-я буква греческого алфавита (использовалась также в коптском). В ионийской системе счисления соответствовала значению 30. Произошла от финикийской буквы Ламд. От самой лямбды произошли многие буквы, такие как L или Л.

Строчная лямбда широко используется в научной нотации. Лямбдой обозначается длина волны, постоянная распада, удельная теплота плавления, плотность заряда, а также многие другие переменные. λ-зонд — датчик остаточного кислорода в выхлопных газах. λ-фаг — название одного из бактериофагов.

Этот текст также доступен на следующих языках: English;

Извините, пожалуйста, хотелось бы узнать где найти букву лямбда в ворде большое человеческое спасибо за ответ. Дополнительная информация на сайте. Ответы доступны для пользователей старше 18 лет.

Еще спрашивают: где найти букву, лямбда где ворде, using lambda in word

Видео загружено админу от пользователя Август: для срочного просмотра на портале.

Чтобы дать правильный ответ на вопрос нужно посмотреть видео. После просмотра вам не потребуется обращаться за помощью к специалистам. Подробные инструкции помогут вам решить ваши проблемы. Приятного просмотра.

Юмор в теме: Учёные заявили, что бокал красного вина заменяет час занятий в спортзале. Так, где я могу поменять абонемент в тренажёрку на ящик Саперави?

Источник статьи: http://brilliant-auction.ru/kak-napisat-bukvu-ljambda-v-vorde/

Принцип работы узлов связаных с выхлопными газами

Их образование происходит в процессе сгорания горючей смеси. В карбюратор поступает топливо, которое равномерно, определенными порциями и концентрацией, передается в цилиндр. В это время клапан находится в открытом состоянии. После впрыскивания горючей смеси, цилиндр начинает движение вниз до плотного закрытия. Далее происходит рабочий такт, после чего, при помощи свечи зажигания производится воспламенение горючей жидкости в клапане и в результате горения следует очередной такт с выбросом отработанных веществ.

Эти процессы вызывают запредельные температурные показатели, поэтому, чтобы детали служили довольно долго, предусмотрена специальная система охлаждения. Также, с ее помощью можно проводить регулирование температуры.

Состав и нормы выхлопов

Прежде чем мы коснемся системы удаления выхлопных газов, следует уделить немного внимания свойствам и составу выбросов. Повышенная концентрация вредных выхлопов наиболее вероятна при скоростных режимах. Этому способствует сочетание сильного разряжения с высокими оборотами. А как известно, последствия отравления угарными газами могут быть самыми различными в зависимости от их концентрации.

Последствия отравления угарными газами

Теперь поговорим про состав выхлопов, и какая норма считается допустимой. Эти выбросы содержат токсичные вещества – альдегиды, оксиды водорода, угарный газ. В их составе еще можно найти и канцерогены. К ним относятся сажа и бензпирен. Все это ослабляет иммунитет, а еще выхлопы могут стать причиной бронхита, гайморита, дыхательной недостаточности, ларинготрахеита и даже рака легких. Они способны вызвать нарушения сердечно-сосудистой системы и спровоцировать атеросклероз головного мозга.

По стандартам Евросоюза допустимая норма СО 0,5–1 г/км, НС – 0,1 г/км, NOx от 0,06 до 0,08 и РМ 0,005 г/км. Раньше цифры были выше. Но так как сегодня топливо стало более качественным, есть специальные системы рециркуляции и нейтрализатор, то эта норма значительно снизилась.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector