Формула нахождения значений скорости, времени и расстояния

Алгоритм на все случаи жизни

Для того чтобы наверняка избежать ошибки, при решении вопроса, как найти среднюю скорость, достаточно запомнить и выполнить простую последовательность действий:

  • определить весь путь, просуммировав длины отдельных его участков;
  • установить всё время пути;
  • поделить первый результат на второй, неизвестные, не заданные в задаче величины при этом (при условии корректной формулировки условий) сокращаются.

В статье рассмотрены простейшие случаи, когда исходные данные приводятся для равных долей времени или равных участков пути. В общем случае соотношение хронологических промежутков либо пройденных телом расстояний может быть самым произвольным (но при этом математически определённым, выраженным конкретным целым числом или дробью). Правило обращения к соотношению vср = S : t абсолютно универсально и никогда не подводит, сколь бы сложные на первый взгляд алгебраические преобразования ни приходилось выполнять.

Напоследок отметим: для наблюдательных читателей не осталась незамеченной практическая значимость использования верного алгоритма. Правильно рассчитанная средняя скорость в приведённых примерах оказалась несколько ниже «средней температуры» на трассе. Поэтому ложный алгоритм для систем, фиксирующих превышения скорости, означал бы большее число ошибочных постановлений ГИБДД, высылаемых в «письмах счастья» водителям.

Наука и скорость бега

Ученые утверждают, что человек способен бежать со скоростью почти 65 км/ч. Новое исследование американских учёных о биологических пределах скорости предлагает по-новому посмотреть на биологию скорости человека.

Считается, что скорость ограничена силой, с которой конечности могут ударяться о поверхность во время бега. Элитные спортсмены могут прикладывать от 360 до 456 кг на одну конечность во время каждого шага. С такими цифрами легко поверить, что они бегут на пике своих возможностей. Но учёные выяснили, что это не так. Что конечности способны прикладывать гораздо большие силы к поверхности.

Ответ кроется в периодах времени контакта стопы с землёй. У элитных спринтеров это время составляет менее одной десятой секунды, а пиковые значения составляют менее одной двадцатой секунды.

Для исследования учёные использовали высокоскоростную беговую дорожку, развивающую скорость более 65 км/ч и способную измерять силу каждого шага. На ней спортсмены бежали назад, вперёд, прыгали на одной ноге. Оказалось, что во время прыжков на одной ноге на максимальной скорости сила, приложенная к поверхности, больше силы при беге на максимальной скорости на двух ногах на 30%.

Также выяснилось, что время соприкосновения ноги с поверхностью при беге вперёд совпадает во временем соприкосновения конечности при беге назад, при этом бег назад, конечно, медленнее. Это совпадение времени при двух очень разных видах активности указывает, насколько быстро мышечные волокна могут создавать силы, необходимые для того, чтобы бегун отрывался от земли во время каждого шага.

Новая работа показывает, что ограничения скорости бега устанавливаются ограничениями скорости сокращения самих мышечных волокон, а скорость сокращения волокон устанавливает предел того, насколько быстро конечность бегуна может прикладывать силу к поверхности бега.

Чтобы преодолеть биологические ограничения скорости, учёные из Гарварда придумали экзокостюм, который снижает метаболические затраты на бег и повышает мышечную производительность. Этот костюм лёгкий и плотно облегает тело. Он имеет приводной блок, который тянет за провода, выступающие в роли второй пары мышц-разгибателей бедра. Исследование показало, что помогая мышцам бедра, костюм влияет и на разгибание колена, и на прикладываемую ступнёй силу к поверхности.

На данный момент исследования продолжаются, чтобы ещё больше снизить метаболические затраты на бег. Еще один немаловажный аспект – доступность такого экзокостюма. Цель учёных – разработать портативную систему, чтобы польза от неё значительно снижала стоимость её ношения.

Есть версия, что скорость бега человека ограничена, потому что большую часть времени бега мы находимся в воздухе. А когда наши ноги касаются земли, у нас остается слишком мало времени, чтобы приложить силу к поверхности. Так, Усэйн Болт находится на земле 42-43% от общего времени шага, в то время как самые быстрые животные – гепард или лошадь – тратят две трети времени шага на контакт с землёй. Неужели, чтобы бежать быстрее, стоит бежать на четырех ногах?

Мировой рекорд Гиннесса для человека, бегущего 100 метров на четвереньках, улучшился с 18,58 секунды в 2008 году (первый год отслеживания записи) до 15,71 секунды в 2015 году. Исследователи сделали вывод на основе этих цифр, что к 2048 году человек на четвереньках сможет двигаться быстрее, чем человек, бегущий прямо!

Скорость автомобиля

Скорость доставки груза во многом определяется скоростью движения автомобиля. Различают среднетехническую скорость и эксплуатационную.

Среднетехническая скорость учитывает кратковременные остановки в пути, связанные с регулированием движения и определяется:

Где Тдв — время движения;

L — пробег автомобиля.

На величину среднетехнической скорости влияют:

— состояние дорожного покрытия;

— интенсивность движения;

— динамические свойства автомобиля и его техническое состояние;

— особенности перевозимого груза;

— условия движения (время суток, погодные условия, время года, частота остановок в пути);

— квалификация и психофизиологические качества водителя.

Нормативы среднетехнических скоростей: в городе в зависимости от грузоподъемности автомобиля до 7 тонн — 23 км/час; 7тонн и выше – 22км/час.

При работе за городом: от типа дорожного покрытия

Нормативы среднетехнических скоростей: в городе в зависимости от грузоподъемности автомобиля до 7 тонн — 23 км/час; 7тонн и выше – 22км/час.

При работе за городом: от типа дорожного покрытия.

Таблица «Технические скорости движения грузовых автомобилей при работе за городом»

Группа дорог Тип покрытия Техническая скорость, км/ч

I усовершенствованный (асфальт) 42

II переходный (гравийно-щебеноч.) 33

III низший (грунтовое) 25

При работе во время бездорожья, в карьерах, при движении по целине нормативная техническая скорость снижается до 40%, при перевозке грузов, требующих особой осторожности — до 15%. Нормативные технические скорости не учитывают в груженом или порожнем состоянии движется автомобиль. Скорость порожнего в среднем на 7-15% выше, чем груженого

Результаты натурных наблюдений показывают, что техническая скорость в городских условиях мало зависит от грузоподъемности, а определяется интенсивностью транспортного потока от 29 до 39 км/час; за городом на грунтовых дорогах (2 тип) техническая скорость может составлять до 40 км/час, на междугородных магистралях (1 тип) скорость до 60 км/час

Скорость порожнего в среднем на 7-15% выше, чем груженого. Результаты натурных наблюдений показывают, что техническая скорость в городских условиях мало зависит от грузоподъемности, а определяется интенсивностью транспортного потока от 29 до 39 км/час; за городом на грунтовых дорогах (2 тип) техническая скорость может составлять до 40 км/час, на междугородных магистралях (1 тип) скорость до 60 км/час

Нормативные технические скорости не учитывают в груженом или порожнем состоянии движется автомобиль. Скорость порожнего в среднем на 7-15% выше, чем груженого. Результаты натурных наблюдений показывают, что техническая скорость в городских условиях мало зависит от грузоподъемности, а определяется интенсивностью транспортного потока от 29 до 39 км/час; за городом на грунтовых дорогах (2 тип) техническая скорость может составлять до 40 км/час, на междугородных магистралях (1 тип) скорость до 60 км/час.

Эксплуатационная скорость рассчитывается с учетом кратковременных остановок в пути, связанных с регулированием движения, и простоев автомобилей в пунктах погрузки и разгрузки:

Где Vэксп — эксплуатационная скорость, км/ч;

Lнар — общий пробег автомобиля за время в наряде, км;

Тдв — суммарное время движения за время работы на линии, час ;

Тп-р — суммарный простой в пунктах погрузки разгрузки за время в наряде, час.

Коммерческая скорость (скорость доставки груза) — учитывает все имеющиеся затраты времени, включая время пролеживания груза на промежуточных складах .

Расстояние между ГО и ГП

V ком = ————————————————————— ;

t с момента окончания погрузки до начала выгрузки

Находим среднюю скорость и средний расход поездки по факту

Если замеры средней скорости поездки важны для вас в коммерческих целях или в качестве отчетности для фирмы, в которой вы работаете, то проще всего купить GPS-навигатор, который обладает функцией учета скорости и времени, проведенного в дороге. Этот прибор полностью заменит бортовой компьютер и сможет без применения различных формул показать вам среднюю скорость поездки.

В иных случаях можно пользоваться более грубыми методами определения. Для замеров вам потребуется секундомер, который будет определять рабочее время поездки. То есть, для нас важна каждая секунда, которую автомобиль проводит в дороге. Время, проведенное на заправках или в придорожных кафе зачастую в расчет не входит. Задачи для точного замера следующие:

  • перед поездкой сбросьте суточный счетчик километров на нуль, начните новый отчет пробега;
  • установите на приборной панели автомобиля секундомер и не забывайте включать его каждый раз, когда трогаетесь;
  • как только вы остановились не по причине дорожной обстановки, а по собственному желанию, выключайте секундомер;
  • после прибытия в пункт назначения выпишите данные суточного счетчика с точностью до одного километра;
  • также выпишите данные секундомера с точностью до минуты — это даст вам возможность развязать уравнение;
  • подставьте полученные данные в формулу Vсредняя = S / t, где V — это средняя скорость, S — пройденное расстояние, а t — затраченное на поездку время.

Предположим, на поездку у вас ушло ровно 5 часов, а пройденное по спидометру расстояние оказалось 300 километров. Это значит, что средняя скорость вашего автомобиля во время движения составила 60 км/ч. Если вы будете практиковать определение средней скорости для каждой дальней поездки, то будете удивлены низкими показателями.

Часто создается впечатление, что средняя скорость должна быть около 120 километров в час, но на деле оказывается меньше 60. Подобным образом вы сможете просчитать средний расход топлива. Нужно затраченные литры поделить на сотни километров пройденного расстояния. К примеру, если вы проехали 300 километров, то делать сумму литров нужно на 3.

Для чего это нужно?

Такие расчеты полезны всем. Мы все время планируем свой день и перемещения. Имея дачу за городом, есть смысл узнать среднюю путевую скорость при поездках туда.

Это упростит планирование проведения выходных. Научившись находить эту величину, мы сможем быть более пунктуальными, перестанем опаздывать.

Вернемся к примеру, предложенному в самом начале, когда часть пути автомобиль проехал с одной скоростью, а другую — с иной. Такой вид задач очень часто используется в школьной программе. Поэтому, когда ваш ребенок попросит вас помочь ему с решением подобного вопроса, вам будет просто это сделать.

Сложив длины участков пути, вы получите общее расстояние. Поделив же их значения на указанные в исходных данных скорости, можно определить время, потраченное на каждый из участков. Сложив их, получим время, потраченное на весь путь.

Задачи на среднюю скорость (далее СК). Мы уже рассматривали задания на прямолинейное движение. Рекомендую посмотреть статьи » » и » » . Типовые задания на среднюю скорость это группа задач на движение, они включены в ЕГЭ по математике и такая задача вполне вероятно может оказаться перед вами в момент самого экзамена. Задачки простые, решаются быстро.

Смысл таков: представьте объект передвижения, например автомобиль. Он проходит определённые участки пути с разной скоростью. На весь путь затрачивается какое-то определённое время. Так вот: средняя скорость это такая постоянная скорость с которой автомобиль преодолел бы данный весть путь за это же время То есть формула средней скорости такова:

Если участков пути было два, тогда

Если три, то соответственно:

*В знаменателе суммируем время, а в числителе расстояния пройденные за соответствующие им отрезки времени.

Первую треть трассы автомобиль ехал со скоростью 90 км/ч, вторую треть – со скоростью 60 км/ч, а последнюю – со скоростью 45 км/ч. Найдите СК автомобиля на протяжении всего пути. Ответ дайте в км/ч.

Как уже сказано необходимо весь путь разделить на всё время движения. В условии сказано о трёх участках пути. Формула:

Обозначим весь пусть S. Тогда первую треть пути автомобиль ехал:

Вторую треть пути автомобиль ехал:

Последнюю треть пути автомобиль ехал:

Таким образом

Решите самостоятельно:

Первую треть трассы автомобиль ехал со скоростью 60 км/ч, вторую треть – со скоростью 120 км/ч, а последнюю – со скоростью 110 км/ч. Найдите СК автомобиля на протяжении всего пути. Ответ дайте в км/ч.

Первый час автомобиль ехал со скоростью 100 км/ч, следующие два часа – со скоростью 90 км/ч, а затем два часа – со скоростью 80 км/ч. Найдите СК автомобиля на протяжении всего пути. Ответ дайте в км/ч.

В условии сказано о трёх участках пути. СК будем искать по формуле:

Участки пути нам не даны, но мы можем без труда их вычислить:

Первый участок пути составил 1∙100 = 100 километров.

Второй участок пути составил 2∙90 = 180 километров.

Третий участок пути составил 2∙80 = 160 километров.

Вычисляем скорость:

Решите самостоятельно:

Первые два часа автомобиль ехал со скоростью 50 км/ч, следующий час – со скоростью 100 км/ч, а затем два часа – со скоростью 75 км/ч. Найдите СК автомобиля на протяжении всего пути. Ответ дайте в км/ч.

Первые 120 км автомобиль ехал со скоростью 60 км/ч, следующие 120 км — со скоростью 80 км/ч, а затем 150 км — со скоростью 100 км/ч. Найдите СК автомобиля на протяжении всего пути. Ответ дайте в км/ч.

Сказано о трёх участках пути. Формула:

Протяжённость участков дана. Определим время, которое автомобиль затратил на каждый участок: на первый затрачено 120/60 часов, на второй участок 120/80 часов, на третий 150/100 часов. Вычисляем скорость:

Решите самостоятельно:

Первые 190 км автомобиль ехал со скоростью 50 км/ч, следующие 180 км — со скоростью 90 км/ч, а затем 170 км — со скоростью 100 км/ч. Найдите СК автомобиля на протяжении всего пути. Ответ дайте в км/ч.

Половину времени, затраченного на дорогу, автомобиль ехал со скоростью 74 км/ч, а вторую половину времени – со скоростью 66 км/ч. Найдите СК автомобиля на протяжении всего пути. Ответ дайте в км/ч.

Путешественник переплыл море на яхте со средней скоростью 17 км/ч. Обратно он летел на спортивном самолете со скоростью 323 км/ч. Найдите среднюю скорость путешественника на протяжении всего пути. Ответ дайте в км/ч.

Это интересно: Как не давать взятки сотруднику ГИБДД – несколько идей для водителя: изучаем вопрос

Примеры решения задач

Задание. Движение материальной точки А задано уравнением: $x=2 t^-4 t^$ . Точка начала свое движение при t=0 c.Как будет двигаться рассматриваемая точка по отношению к оси X в момент времени t=0,5 с.

Решение. Найдем уравнение, которое будет задавать скорость рассматриваемой материальной точки, для этого от функции x=x(t), которая задана в условиях задачи, возьмем первую производную по времени, получим:

Для определения направления движения подставим в полученную нами функцию для скорости v=v(t) в (1.1) указанный в условии момент времении сравним результат с нулем:

Так как мы получили, что скорость в указанный момент времени отрицательна, следовательно, материальная точка движется против оси X.

Ответ. Против оси X.

Формула скорости не по зубам? Тебе ответит эксперт через 10 минут!

Задание. Скорость материальной точки является функцией от времени вида:

где скорость в м/с, время в c. Какова координата точки в момент времени равный 10 с, в какой момент времени точка будет на расстоянии 10 м от начала координат? Считайте, что при t=0 c точка началадвижение из начала координат по оси X.

Решение. Точка движется по оси X, cвязь координаты x и скорости движения определена формулой:

Для ответа на первый вопрос задачи подставим в выражение (2.1) время t=10 c, имеем:

Для того чтобы определить в какой момент времени точка будет находиться на расстоянии 10 м от начала координат приравняем выражение (2.1) к 10 и решим, полученное квадратное уравнение:

$$ begin10 t-t^=10(2.2) t_=5+sqrt approx 8,8(c) ; t_=5-sqrt approx 1,13(c) end $$

Рассмотрим второй вариант нахождения точки на расстоянии 10 м от начала координат, когда x=-10. Решим квадратное уравнение:

При решении уравнения (2.3) нам подойдет корень равный:

Ответ. 1) $x=0 mathrm

m>$ 2) $t_=8,8 mathrm, t_=1,13 c, t_=11 c$

Класс: 4

Цели:

  • закрепить знания нахождения скорости, времени, расстояния;
  • ввести формулы;
  • учиться решать задачи с этими величинами по формулам и без них;
  • развивать мышление и память;
  • прививать любовь к математике.

1. Организация учащихся.

2. Сообщение темы.

— Сегодня на уроке мы закрепим знания нахождения скорости, времени, расстояния. Будем учиться решать задачи с помощью формул.

— А работать мы будем в форме соревнований трех команд:

  • 1 ряд — автомобилисты
  • 2 ряд — летчики
  • 3 ряд — мотоциклисты

— Баллы будем выставлять на доске

3. Соотнести записи с картинкой.

— Как вы думаете, что написано на доске? (Скорости)

— Соотнесите их с нужной картинкой.

(12 км/ч, 60 км/ч, 5 км/ч, 70 км/ч, 120 км/ч, 800 км/ч, 8 км/с, 50 км/ч,250 км/ч.

Автобус, самолет, ракета, пешеход, поезд, велосипедист , автомобиль, пароход, мотоциклист) Каждая команда выставляет по 3 ученика.

— Как вы понимаете км/сек, км/ч, м/мин.

а) В тетрадь записываете ответ с наименованием.

Таблица на интерактивной доске.

Средняя скорость при переменном движении

При неравномерном движении величина средней скорости сильно зависит от выбора промежутка времени движения тела.

Рассмотрим движение тела, которое свободно падает вниз. Закон движения при этом:

Для моментов времени $t_1=0,1\ $c координата тела (подставим время $t_1$ в формулу (4)) равна: $x_1=0,049\ $м; для $t_2=0,2\ $c$\ x_2=0,196$ м, тогда $\left\langle v\right\rangle $в промежутке времени от $t_1=0,1$ с до $t_2=0,2\ $c будет:

Если взять для того же свободно падающего тела промежуток времени от $t_1=0,7$ с до $t_2=0,8\ $c, то средняя скорость получится равной $\left\langle v\right\rangle =7,4\frac{м}{с}$.

Формула скорости математика 4 класс

С какой скоростью черепах ползла после камня, если она проползла 33 см?

3. Поезд шёл до станции 7 ч со скоростью 63 км/ч, а после станции поезд проехал ещё 4 ч. С какой скоростью поезд проедет путь от станции, если всего он прошёл 741 км?

Составные задачи на расстояние.

Образец:

Травоядный динозавр сначала бежал 3 ч со скоростью 6 км/ч, а потом он бежал ещё 4 ч со скоростью 5 км/ч. Какое расстояние пробежал травоядный динозавр?

Рассуждаем так. Это задача в одном направлении.

Составим таблицу.

Слова « скорость », «время», «расстояние» запишем зеленой ручкой.

Скорость (V) Время (t) Расстояние (S)

С. — 6 км/ч Зч? км

П. — 5 км/ч 4ч?км? км

Составим план решения этой задачи. Чтобы узнать какое расстояние пробежал динозавр, надо знать, какое расстояние он пробежал, потом и какое расстояние он пробежал сначала.

S Sп Sс

Чтобы найти расстояние, надо скорость умножить на время.

Sс =Vс t с

6· 3 = 18 (км) — расстояние, которое про­бежал динозавр сначала. Чтобы найти расстояние, надо скорость умножить на время.

Sп = Vп tп

5 4 = 20 (км) — расстояние, которое про­бежал динозавр потом.

18 + 20 = 38 (км)

Составим выражение:6 3 + 5 4 = 38(км)

Ответ: 38 км пробежал травоядный динозавр.

Реши задачу.

1. Ракета сначала летела 28 с со скоростью 15 км/с, а оставшийся путь летела 53 с со скоростью 16 км/с. Какое расстояние проле­тела ракета?

2. Утка сначала плыла 3 ч со, скоростью 19 км/ч, а потом она плыла ещё 2 ч со скоро­стью 17 км/ч. Какое расстояние проплыла утка?

3. Кит полосатик сначала плыл 2 ч со скорос­тью 22 км/ч, а потом он плыл ещё 2 ч со ско­ростью 43 км/ч. Какое расстояние проплыл кит полосатик?

4. Теплоход до пристани шёл 3 ч со скоростью 28 км/ч, а после пристани плыл ещё 2 ч со скоростью 32 км/ч. Какое расстояние про­плыл теплоход?

Задачи на нахождение времени совместной работы.

Образец:

Привезли 240 саженцев елей. Первый лесник может посадить эти ели за 4 дня, а второй за 12 дней. За сколько дней оба лесника могут выполнить задание, рабо­тая вместе?

240: 4 = 60 (саж,) за 1 день сажает пер­вый лесник.

240: 12 — 20 (саж.) за 1 день сажает вто­рой лесник.

60 + 20 = 80 (саж.) за 1 день сажают оба лесника. 240:80 = 3(дн.)

Ответ: за 3 дня лесники посадят сажен­цы, работая вместе.

Реши задачу.

1. В мастерской 140 мониторов. Один мастер отремонтирует их за 70 дней, а другой, за 28 дней. За сколько дней оба мастера отре­монтируют эти мониторы, если будут рабо­тать вместе?

2. Было 600 кг горючего. Один трактор израсходовал его за 6 дней, а другой – за 3 дня. За сколько дней тракторы израсходуют это горючее, работая вместе?

3. Надо перевезти 150 пассажиров. Один катер перевезёт их за 15 рейсов, а другой за 10 рейсов. За сколько рейсов эти катера перевезу всех пассажиров, работая вместе?

4. Один ученик может сделать 120 снежинок 60 мин, а другой — за 30 мин. Сколько потребуется времени ученикам, если они будут работать вместе?

5. Один мастер может изготовить 90 шайбочек за 30 мин, другой—‘за 15 мин. За какое вре­мя они изготовят 90 шайбочек при совмест­ной работе?

⇐ Предыдущая234567891011

Средняя скорость

Факт изменения скорости тела при неравномерном движении не всегда необходимо учитывать, при рассмотрении движении тела на большом участке пути в целом (нам не важна скорость в каждый момент времени) удобно ввести понятие средней скорости.

Например, делегация школьников добирается из Новосибирска в Сочи поездом. Расстояние между этими городами по железной дороге составляет приблизительно 3300 км. Скорость поезда, когда он только выехал из Новосибирска составляла

Рис. 6. Иллюстрация к примеру

Когда рассматривается движение тела на большом участке пути в целом, удобнее ввести понятие средней скорости.

Средней скоростью называют отношение полного перемещения, которое совершило тело, ко времени, за которое совершено это перемещение (рис. 7).

Рис. 7. Средняя скорость

Данное определение не всегда является удобным. Например, спортсмен пробегает 400 м – ровно один круг. Перемещение спортсмена равно 0 (рис. 8), однако мы понимаем, что его средняя скорость нулю равна быть не может.

Рис. 8. Перемещение равно 0

На практике чаще всего используется понятие средней путевой скорости.

Средняя путевая скорость – это отношение полного пути, пройденного телом, ко времени, за которое путь пройден (рис. 9).

Рис. 9. Средняя путевая скорость

Существует еще одно определение средней скорости.

Средняя скорость – это та скорость, с которой должно двигаться тело равномерно, чтобы пройти данное расстояние за то же время, за которое оно его прошло, двигаясь неравномерно.

Из курса математики нам известно, что такое среднее арифметическое. Для чисел 10 и 36 оно будет равно:

Для того чтобы узнать возможность использования этой формулы для нахождения средней скорости, решим следующую задачу.

Велосипедист поднимается со скоростью 10 км/ч на склон, затрачивая на это 0,5 часа. Далее со скоростью 36 км/ч спускается вниз за 10 минут. Найдите среднюю скорость велосипедиста (рис. 10).

Рис. 10. Иллюстрация к задаче

Дано:Найти:

Так как единица измерения данных скоростей – км/ч, то и среднюю скорость найдем в км/ч. Следовательно, данные задачи не будем переводить в СИ. Переведем

Средняя скорость равна:

Полный путь (

Путь подъема на склон равен:

Путь спуска со склона равен:

Время, за которое пройден полный путь, равно:

Ответ:

Исходя из ответа задачи, видим, что применять формулу среднего арифметического для вычисления средней скорости нельзя.

Не всегда понятие средней скорости полезно для решения главной задачи механики. Возвращаясь к задаче про поезд, нельзя утверждать, что если средняя скорость на всем пути поезда равна Мгновенная скорость

Среднюю скорость, измеренную за бесконечно малый промежуток времени, называют мгновенной скоростью тела (для примера: спидометр автомобиля (рис. 11) показывает мгновенную скорость).

Рис. 11. Спидометр автомобиля показывает мгновенную скорость

Существует еще одно определение мгновенной скорости.

Мгновенная скорость – скорость движения тела в данный момент времени, скорость тела в данной точке траектории (рис. 12).

Рис. 12. Мгновенная скорость

Для того чтобы лучше понять данное определение, рассмотрим пример.

Пусть автомобиль движется прямолинейно по участку шоссе. У нас есть график зависимости проекции перемещения от времени для данного движения (рис. 13), проанализируем данный график.

Рис. 13. График зависимости проекции перемещения от времени

На графике видно, что скорость автомобиля не постоянная. Допустим, необходимо найти мгновенную скорость автомобиля через 30 секунд после начала наблюдения (в точке A). Пользуясь определением мгновенной скорости, найдем модуль средней скорости за промежуток времени от

Рис. 14. График зависимости проекции перемещения от времени

Рассчитываем среднюю скорость на данном участке времени:

Для того чтобы проверить правильность нахождения мгновенной скорости, найдем модуль средней скорости за промежуток времени от

Рис. 15. График зависимости проекции перемещения от времени

Рассчитываем среднюю скорость на данном участке времени:

Получили два значения мгновенной скорости автомобиля через 30 секунд после начала наблюдения. Точнее будет то значение, где интервал времени меньше, то есть

A

Мгновенная скорость – это векторная величина. Поэтому, кроме ее нахождения (нахождения ее модуля), необходимо знать, как она направлена.

Направление мгновенной скорости совпадает с направлением перемещения тела.

Если тело движется криволинейно, то мгновенная скорость направлена по касательной к траектории в данной точке (рис. 16).

Рис. 16. Направление мгновенной скорости

Какой должна быть средняя скорость машины в поездке?

Многие задаются вопросом, а какой же на самом деле должна быть средняя скорость автомобиля. Просчитав удивительный факт того, что средняя скорость авто в трассовом режиме составила всего 80 километров в час, водитель начинает сомневаться в том, что он эффективно использует ресурс транспортного средства. На самом деле, такая скорость вполне допустима.

Оптимальной скоростью при движении по трассе является 90 км/ч, но далеко не всегда получает держать крейсерскую скорость постоянно. Иногда происходят ситуации, которые заставляют в течение нескольких минут ехать медленно. К примеру, можно тянуться за фурой, ожидая возможности обгона. Оптимальная средняя скорость на трассе будет зависеть от таких факторов:

  • дорожные условия и состояние дороги, по которой выполняется поездка в нужное вам место;
  • количество транспорта, загруженность и сложность трассы для совершения обгонов медленных авто;
  • наличие дополнительных полос для совершения маневров без снижения скорости машины;
  • позволенная скорость и наличие средств автоматической фиксации нарушения ПДД или постов ГИБДД;
  • соображения личной безопасности, которые исходят из состояния собственного автомобиля;
  • тип транспорта, на котором вы преодолеваете дистанцию, его технические возможности и ограничения;
  • погодные условия, наличие корки льда на трассе или мокрая дорога, снижающая хорошее сцепление.

Это лишь базовые факторы, которые влияют на среднюю скорость машины при трассовой поездке. На практике при отсутствии нарушений ПДД средняя скорость автомобиля на трассе составляет 75-80 километров в час. Достичь средней скорости в 90 км/ч можно только на определенном отрезке трассы. Потому не огорчайтесь, увидев небольшие значения на экране бортового компьютера.

Первым фактором, который нужно оценивать при выборе скоростного режима на трассе, является безопасность. Именно этот важный критерий иногда становится жертвой нехватки времени или желания показать достойные цифры средней скорости. На деле такие цели никогда не приводят к хорошим последствиям, потому всегда выбирайте безопасные режимы поездки.

Равноускоренное движение

Если в течение времени положение тела изменяется относительно предметов, находящихся в покое, то считается, что оно движется. При этом в качестве основного параметра, описывающего перемещение, используется скорость. Движение тела или точки можно представить в виде линии, повторяющей путь прохождения. Называется она траекторией. Если линия прямая, то движение считается прямолинейным.

Неравномерное движение характеризуется перемещением по различной траектории с непостоянной величиной скорости. При этом изменение положения может быть равноускоренным, то есть параметр на одинаковых промежутках увеличивается или уменьшается на одно и то же значение. В качестве примера можно привести падение камня.

Таким образом, если векторы V и ускорения A лежат вдоль прямой, то в проекциях такое направление можно рассматривать как алгебраические величины. При равноускоренном движении по прямой траектории скорость точки вычисляется по формуле: V = V0 + A*t. Где:

  • V0 — начальная скорость;
  • A — ускорение (имеет постоянное значение);
  • t — время движения.

Это основная формула в физике. На графике она изображается как прямая линия v (t). По оси ординат откладывается время, а абсцисс — скорость. Построив график, по наклону прямой можно определить ускорение точки A. Для этого используется формула нахождения сторон треугольника: A = (v-v0) / t.

Если на оси времени выделить промежуток Δt, то можно предположить, что движение будет равномерным и описываться некоторым параметром, равным мгновенному значению в середине отрезка. Эта моментальная величина является векторной. Она численно равна пределу, который пытается достигнуть скорость за промежуток времени, стремящийся к нулю. В физике это состояние описывается формулой мгновенной скорости: V = lim (Δ s/ Δ t) = r-1(t). То есть, с математической точки зрения, это первая производная.

Из этой формулы можно вывести выражение для нахождения конечной скорости материальной точки: V = (V20 — 2* A * s)½. Если же в начальный момент V0 = 0, то формулу можно упростить до вида: V = (2* A * s)½.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector