Механизм изменения фаз газораспределения

Принцип работы фазорегулятора двигателя К4М

Для улучшения наполнения цилиндров топливной смесью на всех режимах двигатели 1,6л оборудованы фазорегулятором распределительного вала впускных клапанов.

Смещение момента закрытия впускных клапанов оптимизирует наполнение цилиндров топливной смесью в зависимости от частоты вращения коленчатого вала.

В результате повышается крутящий момент на режиме средних нагрузок и мощность при высокой частоте вращения коленчатого вала.

При высокой частоте вращения коленчатого вала более позднее закрытие впускных клапанов обеспечивает поступление дополнительной порции топливной смеси за счет высокой скорости движения смеси.

Напротив, при невысокой частоте вращения инерция движения смеси невелика.

Поэтому желательно более раннее закрытие выпускных клапанов, чтобы избежать недостаточного наполнения цилиндров и потерю крутящего момента вследствие вытеснения части свежей смеси.

Чем выше частота вращения коленчатого вала, тем позднее должно происходить закрытие впускных клапанов.

Количество масла, подаваемого к фазорегулятору, определяется электромагнитным клапаном, установленным на головке блока цилиндров (см. рис. 2).

На клапан подается электропитание в виде переменного сигнала степени циклического открытия (амплитудой 12 В и  частотой 250 Гц,).

Это позволяет подавать масло в механизм фазорегулятора и таким образом изменять угол сдвига фаз.

Фазорегулятор распределительного вала постоянно изменяет фазы газораспределения.

ЭБУ посылает на электромагнитный клапан переменный сигнал степени циклического открытия, величина которого пропорциональна требуемому смещению фаз.

Фазы постоянно изменяются от 0˚ до 43˚ по углу поворота коленчатого вала.

При частоте вращения коленчатого вала в пределах 1500–4300 мин–1 ЭБУ подает напряжение питания на электромагнитный клапан.

При превышении 4300 мин–1 питание электромагнитного клапана прекращается. При этом положение механизма фазорегулятора способствует наполнению цилиндров при высокой частоте вращения коленчатого вала. В этом положении запорный плунжер блокирует механизм.

При частоте вращения до 1500 мин–1 напряжение питания не подается на электромагнитный клапан. Механизм заблокирован плунжером. С момента подачи питания на электромагнитный клапан при частоте вращения коленчатого вала более 1500 мин–1 под действием давления масла запорный плунжер отходит и высвобождает механизм.

Управление электромагнитным клапаном фазорегулятора распределительного вала происходит при соблюдении следующих условий:

— датчик частоты вращения коленчатого вала исправен;

— датчики положения распределительных валов исправны;

— система впрыска исправна;

— после запуска двигателя;

— Двигатель работает не на холостом ходу при нажатой педали акселератора;

— получено пороговое значение профиля впрыска, устанавливаемого с учетом нагрузки и частоты вращения коленчатого вала;

— температура охлаждающей жидкости находится в пределах 10 — 120˚ С;

— повышенная температура масла в двигателе.

Резервные режимы:

— возврат фазорегулятора в исходное положение;

— нулевое смещение фаз.

Примечание. При блокировке электромагнитного клапана в открытом положении двигатель на холостом ходу работает не устойчиво, давление во впускной трубе повышено. При этом отмечается более шумная работа двигателя.

Основные неисправности электромагнитного клапана фазорегулятора:

— разомкнутая цепь;

— замыкание на массу или на +12В;

— смещение или рассогласование запрограммированных значений;

— неправильное определение положения фазорегулятора;

— величина регулирования вне допустимых пределов.

Нарушение — фаза — газораспределение

Нарушение фаз газораспределения происходит из-за изменения зазоров в приводе клапанов.

Нарушение фаз газораспределения может быть следствием износа кулачков и шеек распределительного вала, зубьев распределительных шестерен.

Во избежание нарушения фаз газораспределения в пусковой период холодный зазор в рассматриваемом случае нужно сделать равным е 0 7 е0, где е0 — гарантийный зазор.

Реверсирование двигателя должно производиться без нарушения установленных фаз газораспределения , что обеспечивается специальной конструкцией распределительного механизма и наличием дополнительных устройств, призванных осуществлять правильное взаимодействие органов распределения в соответствии с заданным направлением вращения.

Однако при слишком больших зазорах происходит нарушение фаз газораспределения из-за недостаточного открытия клапанов, ухудшается наполнение и очистка цилиндров, возникают стуки в механизме привода клапанов.

Общими неисправностями газораспределительного механизма и привода топливных насосов являются нарушение фаз газораспределения и угла опережения подачи топлива в цилиндры. Они вызывают повышение жесткости работы шатунно-поршневой группы; неполное сгорание топлива и дымление; повышение температуры выпускных газов, прогар поршней; пригорание колец, газовоздушного тракта и турбокомпрессоров и ряд других нежелательных явлений.

Фазы газораспределения определяются профилем и расположением кулачков распределительного вала. Нарушение фаз газораспределения может иметь место при износе кулачков, неправильно отрегулированных клапанных зазорах, неверном соединении при сборке шестерен газораспределения.

В результате износа направляющей втулки и штока клапана увеличивается пропуск масла в камеры сгорания, а следовательно, и его расход. Износ фасок клапана и седла вызывает нарушение фаз газораспределения . В связи с этим после 1500 ч работы дизеля типа В-2 необходимо проверить регулировку фаз газораспределения ( моментов начала открытия и конца закрытия впускных и выпускных клапанов согласно диаграммам фаз газораспределения) и в случае необходимости подрегулировать механизм газораспределения.

Износ шестерен характеризуется выработкой рабочих поверхностей зубьев. Признаками выработки являются увеличение зазоров между зубьями, появление шума и стуков во время работы двигателя, а также нарушение фаз газораспределения . Шестерни, как правило, ремонту не подлежат и их заменяют новыми в тех случаях, когда зазор между зубьями ведомой и ведущей шестерен достигает величины, превышающей нормальный монтажный зазор в 2 5 — 3 раза, а также при наличии трещин, разработке паза под шпонку и других дефектов, вызывающих опасность разрушения шестерни.

В тех случаях, когда неисправность системы питания топливом приводит к обогащению рабочей смеси топливным газом, в отработавших газах увеличивается количество продуктов неполного сгорания в виде окиси углерода СО. В зависимости от того, как проходит рабочий процесс в цилиндре двигателя, в отработавших газах меняется количество водяных паров и окиси углерода. Кроме того, при нарушении фаз газораспределения или нарушении теплового процесса по каким-либо другим причинам, в отработавших газах может появиться и несгоревший топливный газ, например, метан СН4 и др. Следовательно, анализом состава отработавших газов можно оценить техническое состояние и качество работы системы питания топливом.

Образование смол и нерастворимых осадков в нефтяных топливах приводит к значительному ухудшению их эксплуатационных свойств. Нерастворимые осадки вызывают засорение фильтров и ухудшают прокачиваемость топ-лив, смолы увеличивают нагарообразование топлив, а при отложении на стенках топливных систем вызывают нарушение нормальной работы двигателя. Так, отложение смол в карбюраторных двигателях на штоках и тарелках впускных клапанов препятствует нормальной посадке клапанов в гнездах и вызывает их зависание, что ведет к уменьшению давления в камерах сгорания и к нарушению фаз газораспределения .

Источник

Вызовы

Основным фактором, препятствующим широкому использованию этой технологии в серийных автомобилях, является возможность создания рентабельных средств управления фазами газораспределения во внутренних условиях двигателя. Двигатель, работающий со скоростью 3000 оборотов в минуту, будет вращать распределительный вал 25 раз в секунду, поэтому изменения фаз газораспределения должны происходить в точное время, чтобы обеспечить преимущества в производительности. Электромагнитные и пневматические бескулачковые приводы клапанов обеспечивают наилучший контроль точной синхронизации клапанов, но в 2016 году они не являются рентабельными для серийных автомобилей.

Описание двигателя G4NA

ВНИМАНИЕ! Найден совершенно простой способ сократить расход топлива! Не верите? Автомеханик с 15-летним стажем тоже не верил, пока не попробовал. А теперь он экономит на бензине 35 000 рублей в год! Читать дальше». Рассмотрим особенности этого ДВС:

Рассмотрим особенности этого ДВС:

  • БЦ и 2-вальная ГБЦ отлиты из сплава алюминия;
  • цилиндровые гильзы стальные, но с тонкими стенками, посадка в блок самостоятельно невозможна;
  • цепь выполняет функцию привода ГРМ — она и передаёт вращение от коленвала к распредвалам;
  • 16 клапанов, установленных по схеме DOHC, регулируются автоматически, посредством гидравлических компенсаторов;
  • навесное оборудование получает привод через клиновые ремни.

На новом двигателе задействовано несколько передовых систем:

  • настройка фаз и высоты подъёма клапанов осуществляется системами Dual CVVt и CVVL;
  • система питания — распределённый впрыск MPI или непосредственный GDI.

Цепь ГРМ обрывается редко, чаще перескакивают звенья. В этом случае, также как и при обрыве, клапана гнёт от встречи с поршнями. Разработчики не предусмотрели цековки на торцах поршней, посчитав, что металлическая цепь будет надёжно ходить 200 тыс. км и больше. На самом деле, это возможно лишь в случае постоянной эксплуатации машины по идеально ровным дорожным покрытиям, что в наших условиях — из области фантастики.

Новым в конструкции двигателя G4NA, что отличает его от оригинала G4KD, стало введение гидротолкателей. На прежнем моторе их не было, регулировка клапанов проводилась вручную. Кроме того, ДВС получился длинноходным, поскольку соотношение хода поршня к размеру цилиндра больше 1 единицы. На G4KD этот показатель равнялся 86/86 мм, стало — 97/81 мм.

В остальном практически всё осталось как есть, не считая частичных изменений. Так, помимо добавления гидрокомпенсаторов с рокерами, улучшено навесное оборудование и его компоновка на корпусе. Впускной коллектор заменили на пластиковый, стало возможным изменение геометрии каналов. А вот цилиндровые гильзы, которые стояли внутри дюралевого БЦ, остались теми же — тонкими и не надёжными.

Таким образом, конструкторам так и не удалось осуществить планетарное улучшение технических возможностей — не увеличилась мощность, крутящий момент и объёмы цилиндров. Зато появилась хорошая приёмистость, отпала необходимость сложной и дорогостоящей регулировки тепловых зазоров.

Изготовитель Hyundai
Марка ДВС G4NA
Начало производства 2006 г.
Объем 1999 см3 (2,0 л)
Мощность 123 кВт (167 л. с.)
Момент крутящий 201 Нм (на 4200 об/мин)
Вес 117 кг
Степень сжатия 10.3
Питание инжектор
Тип мотора рядный бензиновый
Зажигание DIS-4
Число цилиндров 4
Местонахождение первого цилиндра ТВЕ
Число клапанов на каждом цилиндре 4
Материал ГБЦ сплав алюминиевый
Впускной коллектор пластиковый
Выпускной коллектор литой чугунный
Распредвал встроен механизм CVVT
Материал блока цилиндров алюминиевый сплав
Диаметр цилиндра 81 мм
Поршни алюминиевые
Коленвал 5 опор, 8 противовесов
Ход поршня 97 мм
Горючее АИ-95
Нормативы экологии Евро-5
Расход топлива трасса – 6,1 л/100 км; смешанный цикл 7,5 л/100 км; город – 9,8 л/100 км
Расход масла максимум 0,6 л/1000 км
Какое масло лить в двигатель по вязкости 5W30, 5W40, 0W30, 0W40
Масло для G4NA по составу синтетика, полусинтетика
Объем масла моторного 4,2 л
Температура рабочая 95°
Ресурс ДВС заявленный 250000 км; реальный 200000 км
Регулировка клапанов гидротолкатели
Система охлаждения принудительная, антифриз
Объем ОЖ 6,9 л
Помпа Optima III 2510041700
Свечи на G4NA Bosch 0242236578, 0242236577 иридий, 0242229791 платина-иридий, Champion EON9/286,
Зазор свечи 1,1 мм
Цепь ГРМ 243212Е000
Порядок работы цилиндров 1-3-4-2
Воздушный фильтр Mando/MAF086
Масляный фильтр Bosch 045103316, Borg&Beck BFO4198, Blue Print ADG02144, AMC HO-701
Маховик 232002
Болты крепления маховика М12х1,25 мм, длина 26 мм
Маслосъемные колпачки Ajusa 57047000
Компрессия от 13 бар, разница в соседних цилиндрах максимум 1 бар
Обороты ХХ 750 – 800 мин-1
Усилие затягивания резьбовых соединений свеча – 31 – 39 Нм; маховик – 62 – 87 Нм; болт сцепления – 19 – 30 Нм; крышка подшипника – 68 – 84 Нм (коренной) и 43 – 53 (шатунный); головка цилиндров – три стадии 20 Нм, 69 – 85 Нм + 90° + 90°

Принцип работы системы

Принцип действия системы VVT-I способствует плавному изменению фазы газораспределения, в зависимости от условий работы силового агрегата. Это происходит за счет поворота распредвала впускных клапанов по отношению к приводящей шестерне в пределах от 40 до 60 градусов. Привод VVT, оснащенный лопастным ротором, монтируется на впускном валу. Если мотор находится в состоянии покоя, то нормальный запуск обеспечивается специальным фиксатором, удерживающем распределительный вал в положении максимальной задержки.

1 — управляющий клапан VVT-i, 2 — датчик положения распредвала, 3 — датчик температуры охлаждающей жидкости, 4 — датчик положения коленвала, 5 — привод VVT

За счет электромагнитного клапана, управляемого электронным блоком, осуществляется регулировка подачи масла в полости задержки и опережения привода VVT. Информация по дозировке подаваемого масла берется от сигналов датчика положения распределительных валов. Максимальный угол задержки на заглушенном моторе, создается благодаря золотнику, который перемещается специальной пружиной.

Команды на электромагнитный клапан поступают от блока управления двигателем. В зависимости от конкретного режима мотора, может происходить следующее:

клапан переходит в режим опережения и сдвигает золотник управляющего механизма. При этом поток масла направляется к ротору со стороны полости опережения, поворачивая распределительный вал;

Движение масла внутри клапана и муфты VVT-I

  • клапан переходит в режим задержки и перемещает золотник управляющего механизма. При этом поток масла направляется к ротору со стороны полости задержки, что приводит к вращению распредвала в туже сторону;
  • удержания клапана в нейтральном положении при отсутствии изменений.

Почему выполняется запаздывание и опережение срабатывания клапанов?

Чтобы улучшить наполнение цилиндров, а также обеспечить более интенсивную очистку от отработавших газов, срабатывание клапанов происходит не в момент достижения поршня мертвых точек, а с небольшим опережением или запаздыванием. Так, открытие впускного клапана выполняется до момента прохождения поршнем ВМТ (от 5° до 30°). Это позволяет обеспечить более интенсивное нагнетание свежего заряда в камеру сгорания. В свою очередь, закрытие впускного клапана происходит с запаздыванием (после того как поршень достиг нижней мертвой точки), что позволяет продолжить наполнение цилиндра горючим за счет сил инерции, так называемый инерционный наддув.

Выпускной клапан также открывается с опережением (от 40° до 80°) до момента достижения поршнем НМТ, что позволяет обеспечить выход большей части отработавших газов под действием собственного давления. Закрытие выпускного клапана, напротив, происходит с запаздыванием (после прохождения поршнем верхней мертвой точки), что позволяет силам инерции продолжить удаление отработавших газов из полости цилиндра и делает более эффективной его очистку.

Этап работы двигателя, при котором оба клапана открыты одновременно, получил название перекрытие клапанов. Как правило, величина перекрытия составляет около 10°. При этом, поскольку длительность перекрытия очень мала, а раскрытие клапанов незначительно, утечки не происходит

Это довольно благоприятный этап для наполнения и очистки цилиндров, что особенно важно при высоких оборотах

В начале открытия впускного клапана текущий уровень давления в камере сгорания выше, чем атмосферное. В результате отработавшие газы очень быстро перемещаются к выпускному клапану. Когда двигатель перейдет на такт впуска, в камере установится высокое разрежение, выпускной клапан полностью закроется, а впускной раскроется на достаточную для интенсивного наполнения цилиндра величину сечения.

Детали клапанной группы

К клапанной группе относятся клапан, направляющая втулка клапана, клапанная пружина с опорной шайбой и деталями крепления (они же — «сухари»). Все описанное приведено на рисунке 4.13.

Клапан служит для закрытия и открытия впускных или выпускных каналов в головке блока цилиндров. Основными элементами клапана являются тарелка и стержень.

Тарелка клапана имеет шлифованную конусную рабочую поверхность — фаску (обычно под углом 45°), которой клапан плотно притерт к седлу.

Стержень клапана отшлифован и проходит через направляющую втулку. На конце стержня клапана имеется канавка или отверстие для крепления опорной шайбы пружины. Разноименные клапаны имеют тарелки различных диаметров (зачастую, больший — у впускного клапана) или отличаются специальными метками.

Рисунок 4.13 Клапанный механизм.

Седло клапана (на рисунке 4.13) представляет собой металлическое кольцо цилиндрической формы с обработанной под углом 45 градусов рабочей поверхностью (той самой, к которой прилегает тарелка клапана). Седла клапанов запрессованы в головку блока цилиндров. Существуют конструкции с заменяемыми седлами и с седлами, запрессованными наглухо.

Направляющая втулка, в которой клапан устанавливается стержнем, обеспечивает точную посадку клапана в седло. Втулки запрессовывают в головку цилиндров.

Рисунок 4.14 Клапан.

Клапанная пружина удерживает клапан в закрытом положении, обеспечивая плотную его посадку в гнезде, а также создает постоянное прижатие толкателя к поверхности кулачка распределительного вала. Пружину надевают на выходящий из втулки конец стержня клапана и закрепляют на нем в сжатом состоянии с помощью опорной шайбы с коническими разрезными сухарями, которые входят в выточку на стержне клапана. Иногда на клапан устанавливают две пружины: пружину меньшего диаметра — внутрь пружины большего диаметра. Это делается для того, чтобы избежать резонанса пружины на определенных частотах работы двигателя, а также для подстраховки на случай поломки пружины. Часто применяются пружины с переменным шагом витков. Это исключает вероятность возникновения вибрации пружины и ее поломки при большом числе оборотов коленчатого вала двигателя. При установке двух пружин их подбирают таким образом, чтобы направление навивки их витков было выполнено в разные стороны, что также устраняет опасность возникновения резонансных колебаний пружин.

Для ограничения количества масла, поступающего в направляющую втулку, и устранения подсоса масла в цилиндр через зазоры во втулке на верхних впускных клапанах под опорной шайбой ставят маслосъемные колпачки.

Толкатель служит для передачи осевого усилия от кулачка распределительного вала на стержень клапана или на штангу. Дело в том, что передавать усилие от кулачка распредвала лучше именное через промежуточное звено – толкатель. Поскольку при длительной работе элементы клапанного механизма изнашиваются и, когда приходит время замены чрезмерно износившихся деталей, проще заменять небольшой толкатель, нежели целый распредвал или клапаны.

Рисунок 4.15 Головка блока цилиндров с элементами газораспределительного механизма.

Как было отмечено выше, сейчас получили широкое распространение так называемые гидрокомпенсаторы. «Гидро», потому что работают за счет давления моторного масла, а «компенсаторы», так как компенсируют или, проще говоря, сводят на нет зазор между кулачком распределительного вала и толкателем во время работы.

Толкатели в большинстве двигателей устанавливают без втулок непосредственно в отверстия приливов головки блока цилиндров. В некоторых двигателях для толкателей имеются направляющие втулки, отлитые секцией на несколько цилиндров.

Коромысло. Изменяет направление передаваемого движения. Устанавливают зачастую, когда распределительный вал один, а клапанов на цилиндр два или четыре, но расположены они особым образом (смотрите рисунок 4.16). Коромысла устанавливают на бронзовых втулках или без втулок на осях, которые при помощи стоек закреплены на головке блока. Одно плечо коромысла располагается над стержнем клапана, а другое — под или над кулачком распределительного вала. Для регулировки зазора между стержнем клапана и коромыслом в конец коромысла вкручен регулировочный винт с контргайкой.

Рисунок 4.16 Привод клапанов через коромысло.

Как двигают фазы

У разных производителей существуют различные конструкции таких систем. Одни изменяют время подъема клапанов, другие – высоту подъема, а третьи – и то, и другое. Системы изменения фаз могут устанавливаться только для впускных клапанов или и для впускных, и для выпускных. В настоящее время используется три способа изменения фаз газораспределения.

  • Первый способ – поворот распредвала по ходу вращения с ростом оборотов двигателя. Таким образом, обеспечивается более раннее открытие клапанов. Основная деталь таких систем – фазовращатель (другое название – гидроуправляемая муфта). Он представляет собой ротор, смонтированный в шкиве распредвала, между которыми есть полости. Эти полости по сигналу контроллера двигателя через электромагнитный клапан заполняются маслом, что приводит к повороту распредвала. Угол поворота зависит от того, какая именно полость заполнена. Фазовращатель в большинстве случаев устанавливается только на впускной распредвал, на некоторых системах – и на выпускной. Описанный способ используется в системах VANOS и Double VANOS от BMW, VVT-i и Dual VVT-i(Variable Valve Timing with intelligence) от Toyota, VVT(Variable Valve Timing) от Volkswagen, VTC(Variable Timing Control) от Honda, CVVT(Continuous Variable Valve Timing) от Hyundai, Kia, Volvo, General Motors, VCP(Variable Cam Phases) от Renault.
  • Второй способ – применение кулачков разного профиля на разных режимах работы. На малых оборотах используются кулачки, обеспечивающие «узкие» фазы, то есть малые высоту подъема и время открытия клапанов. С ростом оборотов по команде блока управления происходит переключение на «широкофазные» кулачки. Таким образом, фазы меняются ступенчато, а не плавно, как в предыдущей системе. Зато, кроме фаз, регулируется и высота подъема клапана. Разнопрофильные кулачки используют в своих системах: VTEC (Variable Valve Timing and Lift Electronic Control) от Honda, VVTL-i (Variable Valve Timing and Lift with intelligence) от Toyota, MIVEC (Mitsubishi Innovative Valve timing Electronic Control) от Mitsubishi.
  • Третья, самая совершенная группа систем, плавно регулирует высоту подъема клапанов. Главное достоинство таких систем в том, что они позволяют отказаться от дроссельной заслонки на впуске. Тем самым существенно снижаются насосные потери и расход топлива. Впервые такая система под названием Valvetroniс была применена BMW. В ней между распредвалом и клапаном расположен дополнительный рычаг, один конец которого давит на коромысло клапана, а второй соединен с эксцентриковым валом. Проворачивая этот вал с помощью электромотора, система управления тем самым меняет наклон рычага и его плечо. Увеличение плеча приводит к увеличению подъема клапана и количества воздуха, попадающего в цилиндры. Высота подъема регулируется в пределах от 0,5 до 12 мм.

Вслед за BMW аналогичные системы создали Valvematic от Toyota, VEL (Variable Valve Event and Lift System) от Nissan, MultiAir от Fiat, VTI (Variable Valve and Timing Injection) от Peugeot.

В системе MultiAir используется один распредвал, который приводит и впускные, и выпускные клапана. Но если выпускные клапана механически управляются кулачками, то на впускные воздействие от кулачков передается через специальную электрогидравлическую систему. Именно в ней и состоит новизна. Впускные кулачки нажимают на поршни, а те через электромагнитный клапан передают усилие на рабочие гидроцилиндры, которые уже воздействуют на впускные клапана. Главный узел – именно клапан, регулирующий давление в системе. Он имеет только два положения: открыт-закрыт. Если он открыт, давление в системе отсутствует, и усилие на клапан не передается. Поэтому, управляя моментом и длительностью открытия электромагнитного клапана за то время, пока кулачок воздействует на поршенек, можно добиться любого алгоритма открытия впускных клапанов. А значит, ширину фаз можно плавно регулировать от 0 до 100%. Максимальная ширина фазы определяется профилем впускного кулачка распредвала.

А какое отношение все вышеописанное имеет к экологии? Системы изменения фаз газораспределения, оптимизируя процесс сгорания топлива, тем самым снижают его расход, а, значит и количество вредных выбросов.

См. также

  • Изменяемые фазы газораспределения
  • Транспорт
  • Транспортное средство
    1. ↑ Wu, B. (2007). A simulation-based approach for developing optimal calibrations for engines with variable valve actuation. Oil and Gas Science and Technology, 62(4), 539—553.
  • ↑ Hong, H. (2004). Review and analysis of variable valve timing strategies — eight ways to approach. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 218(10), 1179—1200.
  • . Practical Machinist. Дата обращения 4 апреля 2010.
  • Arthur W., Gardiner (PDF). Langley Research Center/Langley Aeronautical Laboratory (25 February 1927).
  • Coomber, Ian. Vauxhall: Britain’s Oldest Car Maker. — Fonthill Media, 5 December 2021. — P. 46. — ISBN 978-1781556405.
  • . freepatentsonline.com . Дата обращения 12 января 2011.
  • . freepatentsonline.com . Дата обращения 12 января 2011.
  • (PDF). alfaspiderfaq.org . Дата обращения 29 ноября 2008.
  • Rees, Chris. Original Alfa Romeo Spider. — MBI Publishing 2001. — P. 102. — ISBN 0-7603-1162-5.
  • . www.marineenginedigest.com . Дата обращения 27 октября 2012.
  • . Дата обращения 17 января 2012.
  • . Дата обращения 17 января 2012.
  • Lumley, John L. Engines — An Introduction. — Cambridge UK : Cambridge University Press, 1999. — P. 63–64. — ISBN 0-521-64277-9.
  • . Дата обращения 17 января 2012.
  • . Дата обращения 17 января 2012.
  • . Дата обращения 17 января 2012.
  • . Дата обращения 17 января 2012.
  • . Дата обращения 17 января 2012.

Система Старт-стоп что это и как работает

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector