Генератор переменного тока: устройство, принцип работы, технические характеристики и 7 видов приборов
Содержание:
Типы генераторов
Однако прежде стоит разобраться, какой мощности нужна система энергообеспечения для частного дома, а также, какой больше подойдет: дизельный или бензиновый генератор для частного дома. Сегодня на рынке представлено множество различных по характеристикам и свойствам моделей, различающихся как по мощности, так и по принципу действия.
Бензиновый
Автономный генератор тока бензиновый для частного дома — оптимальный вариант для обеспечения бесперебойного энергоснабжения в периоды отключения. Принцип работы основывается на сгорании топлива, проходящего процедуру очистки от механических примесей, с участием кислорода, поступающего посредством втягивания в специальные фильтра. Сгорающая смесь образует приводящий поршневую систему в действие газ. Вращательный момент активизирует ротор, преобразующий его в электрическую энергию.
Мощность генерации бензиновых устройств, использующихся для обеспечения электроэнергией стандартного загородного дома на одну семью, в большинстве своем ограничено 12 кВт, чего вполне хватает для обеспечения напряжения в 220 и 330 В. Для питания энергией больших торговых и офисных помещений могут использоваться устройства мощностью до 30 кВт. Часовое потребление горючего варьируется от 0,3 до 4 литров в зависимости от выходного напряжения.
При приобретении необходимо внимательно ознакомиться с инструкцией, в частности относительно рекомендованного времени бесперебойной работы. В среднем это время составляет от 10 до 12 часов, после чего требуется охлаждение системы. В то же время хороший бензиновый генератор способен работать дольше, но круглосуточное его использование тем не менее не рекомендуется. По видам различают бензиновый генератор для частного дома, цена которого ниже, — двухтактные и более дорогие, способные вырабатывать большую мощность, — четырехтактные.
Дизельный
Дизельные аппараты также используются в качества аварийного источника энергоснабжения, а также как дополнительный источник питания в тех случаях, когда предоставляемой мощности электроэнергии не хватает для обеспечения всех потребностей в ней. Дизельные аппараты весьма широко представлены, многие из них способны вырабатывать значительное количество электроэнергии, в связи с чем чаще используются для нужд нескольких домов. Принцип их работы схож с бензиновыми, однако, как следует из названия, работают на другом виде топлива. Есть также модель для обеспечения нужд одного хозяйства. Мощность трехфазных дизельных устройств, представленных на рынке, составляет от 8 до 30 кВА.
Газовый
Существуют также устройства, принцип работы которых основывается на природном газе, за счет энергии сгорания которого приводятся в движение лопатки турбины. Компрессор вращается за счет половины вырабатываемой энергии, другая питает сам генератор. В этом его преимущество, он полностью автономный, при этом экологически чистый.
Опасность газовых генераторов связана с возможной протечкой и, как следствие, взрывом при повреждении системы.
Однако необходимо отметить опасность, с которой сопряжена работа устройства. Еще опаснее устройство, принцип работы которого основан на сжиженном газе. Опасность связана с характерными для газовых устройств проблемами, подразумевающими протечку и, как следствие, возможность взрыва при повреждении системы.
Генераторы переменного тока.
При достаточно высоком напряжении получать большие токи позволяют генераторы переменного тока. Несколько типов индукционных генераторов различают в настоящее время.
Они состоят из создающего магнитное поле постоянного магнита или электромагнита и обмотки, индуцируется в которой переменная ЭДС. Так как складываются наводимые в последовательно соединенных витках ЭДС, то в рамке индукции амплитуда ЭДС будет пропорциональна количеству в ней витков. Также она пропорциональна через каждый виток амплитуде переменного магнитного потока. В генераторах тока, чтобы получить большой магнитный поток применяется специальная магнитная система, состоящая из двух сердечников, изготовленных из электротехнической стали. В пазах одного из сердечников размещены создающие магнитное поле обмотки, а в пазах второго располагаются обмотки, в которых индуцируется ЭДС. Один из сердечников называется ротором, так как он вращается вокруг вертикальной или горизонтальной оси, вместе со своей обмоткой.
Другой сердечник называется статором — это неподвижный сердечник с его обмоткой. Как можно меньшим делается зазор между сердечниками ротора и статора, наибольшее значение потока магнитной индукции обеспечивается этим. Электромагнит, являющийся ротором вращается в больших промышленных генераторах, а обмотки, уложенные в пазах статора и в которых наводится ЭДС остаются неподвижными.
С помощью скользящих контактов приходится во внешнюю цепь подводить ток к ротору или отводить его из обмотки ротора. Контактными кольцами, которые присоединены к концам его обмотки для этого снабжается ротор. К кольцам прижаты неподвижные пластины-щетки, они осуществляют связь с внешней цепью обмотки ротора. В обмотках создающего магнитное поле электромагнита, сила тока значительно меньше той силы тока, которую отдает генератор тока во внешнюю цепь. Поэтому гораздо удобнее снимать генерируемый ток с неподвижных обмоток, а сравнительно слабый ток подводить через скользящие контакты к вращающемуся электромагниту. Вырабатывается этот ток, расположенным на том же валу отдельным генератором постоянного тока (возбудителем). Вращающимся магнитом создается магнитное поле в маломощных генераторах тока, щетки и кольца в таком случае вообще не требуются.
Бывают двух типов обмотки возбуждения синхронных генераторов: с явнополюсными и неявнополюсными роторами. Выступают из индуктора несущие обмотки возбуждения в генераторах с явнополюсными роторами полюса. На сравнительно низкие частоты вращения рассчитаны генераторы данного типа, они используются для работы с приводом от поршневых паровых машин, гидротурбин, дизельных двигателей. Для привода синхронных генераторов с неявнополюсными роторами применяются газовые и паровые турбины. Стальную поковку с фрезерованными продольными пазами для витков обмотки возбуждения, которые обычно выполнены в виде медных пластин, представляет собой ротор такого генератора. В пазах фиксируются витки, а для снижения потерь мощности и уровня шума, связанных с сопротивлением воздуха шлифуется, а затем полируется поверхность ротора.
По большей части трехфазными делаются обмотки генераторов тока. Подобное сочетание движущихся частей, способных создавать энергию также экономично и непрерывно, встречается в механике редко.
Современный генератор тока является внушительным сооружением, состоящим из медных проводов, стальных конструкций и изоляционных материалов. С точностью до 1 миллиметра изготавливаются важнейшие детали генераторов, которые сами имеют размеры несколько метров.
Источник
Виды
Существует несколько классификаций асинхронных генераторов. Они могут отличаться следующими факторами.
- Типом ротора – вращающейся части конструкции. Сегодня выпускаемые агрегаты данного типа предусматривают в своей конструкции фазный или короткозамкнутый ротор. Первый оборудован индуктивной обмоткой, в качестве которой выступает изолированный провод. С его помощью и удается создать динамическое магнитное поле. Второй вариант – единая конструкция, имеющая цилиндрическую форму. Внутри нее расположены штыри, оборудованные двумя замыкающими кольцами.
- Количеством рабочих фаз. Под ними подразумевают выходные или статорные обмотки, расположенные внутри устройства. Выходные при этом могут иметь одну фазу или три. Этот показатель определяет назначение генератора. Первый вариант доступен для эксплуатации при напряжении в 220 В, второй – 380 В.
- Схемой включения. Выделяют несколько способов организации работы трехфазного генератора. Можно подключить катушки к устройству, применяя схему «звезда» или «треугольник». Также их можно разместить на полюсах неподвижного элемента – статора.
Применения
Такие электростанции и установки применяются в качестве основных, резервных или аварийных источников электроэнергии для потребителей одно- или трёхфазного переменного тока, для электропитания тепловозов, карьерных самосвалов, подводных лодок и другой техники, используют в малой энергетике, для энергообеспечения вахтовых посёлков, производств, установок связи и т. д., в качестве железнодорожных электростанций и энергорезервирования, в системе аварийного снабжения компьютерных сетей, потребителей собственных нужд на атомных и тепловых электростанциях, и других стратегических объектов, включенных совместно с ИБП
Первые передвижные дизельные электростанции в СССР были спроектированы в ПКБ Мосэнерго (Мосэнергопроект) для восстановления нарушенного электроснабжения и для энергоснабжения перебазированных промышленных предприятий в новых районах во время Великой Отечественной войны Народный Комиссариат Электростанций СССР предложил Мосэнерго изготовить передвижные тепловые электростанции, используя демонтируемое, бывшее в работе оборудование. Передвижные электростанции-энергопоезда собирались на Фрунзенской ТЭЦ. Готовые энергопоезда мощностью 500—1500 кВт отправлялись в освобождённые города, где они обеспечили электроснабжение аварийно-восстановительных работ.
Классификация генераторов
Существует несколько признаков, на основании которых электрический генератор можно отнести к одной из разновидностей:
- Сфера применения.
- Режимы работы.
- Фазность.
- Автономность.
Эксплуатация По каждому из признаков надо изучить модель заранее, тогда и выбор проще будет сделать.
Автономность
Полная независимость от централизованных источников энергии — одно из главных преимуществ, которыми обладают современные генераторы. В зависимости от этого показателя, модели делятся на мобильные либо стационарные.
Стационарные
Речь идёт о генераторных станциях, в основе работы которых — дизельные двигатели. Подходят для снабжения электрической энергии потребителей, удалённых от других подобных объектов. Обеспечивают снабжение током на тех территориях, где даже малейшая остановка производственных процессов приведёт к серьёзным негативным последствиям.
Мобильные
Чаще всего эти агрегаты — самые компактные. Допускают перемещение в пространстве установки. У передвижных станций сфера применения довольно широка:
- Электросварка.
- Местное освещение.
- Снабжение током бытовых электроприборов, и так далее.
Обслуживание и ремонт Внутри оборудования размещают двигатель внутреннего сгорания, который способен работать на дизельном топливе либо бензине. Агрегаты отличаются друг от друга по габаритам. Одного человека хватает, чтобы перемещать только самые маленькие устройства. Но есть мобильные варианты, монтаж которых проводят на автомобильных прицепах.
Фазность
Агрегаты разделяют на трёх- и однофазные в зависимости от внутренней структуры устройств.
Однофазные
Отличаются способностью производить однофазный ток. Питание бытовых приборов — главное назначение устройств. Обычно аппараты выпускают мобильными, чтобы с ними было проще обращаться. Частные домовладения — объекты, внутри которых однофазные агрегаты можно встретить чаще всего. Например — для удовлетворения различных нужд на бытовом уровне.
Трёхфазные
Питание силового электрооборудования — вот в чём состоит основная функция. Иногда происходит разделение такой энергии по нескольким фазам. Для питания электропроводки это очень удобное решение, позволяющее развести линию на несколько частей.
Интересно! Главное — чтобы мощность потребления у всех линий оставалась примерно одинаковой. Генератор быстро выходит из строя, если между значениями образуется серьёзная разница.
Режимы работы
Основные и резервные — две главные разновидности режимов работы согласно этой классификации.
Основные
Такие аппараты созданы, чтобы работать на постоянной основе. Группу промышленных установок представляют мощные электрогенераторы, снабжённые дизельными двигателями. Актуальны для объектов, которым наличие электрической энергии требуется постоянно.
Резервные
По названию легко понять, что такие электрические генераторы применяются лишь в некоторых, исключительно крайних случаях. Например, если централизованное электроснабжение отключают на некоторое время. Такие приборы могут включаться, если срабатывает реле, реагирующее на уменьшение напряжения. Беспрерывная работа допустима только на протяжении нескольких часов.
Сфера применения
Генераторы выпускают с расчётом на два основных направления — бытовые условия либо промышленные объекты.
В быту
Выбор бытовых генераторов на современном рынке порадует любого потребителя, вне зависимости от масштабов и запросов. Обычно выбирают однофазные установки, способные наладить бесперебойное снабжение электрическим током при аварийных ситуациях. Питание выносного электрооборудования — ещё одна сфера применения. Качество тока становится особенно важным показателем, если речь идёт о бытовых электроприборах, применяющих цифровую элементную базу. В этом случае энергия должна обладать такими параметрами: 220 В, 1 А, 50 Ггц.
Вам это будет интересно Виды и применение греющего электрического кабеля
На даче
При электросварочных работах применяют установки, обладающие повышенной мощностью. Преимущество в том, что для формирования электромеханической дуги вырабатывается ток с серьёзной силой.
Обратите внимание! Если в инструкции не описано сразу применение для электросварки, то стоит отказаться от подобной идеи. Иначе генераторы быстро портятся
Промышленные объекты
Чаще речь идёт о независимых мощных стационарных установках. Они актуальны для промышленных предприятий и целых жилых районов, больниц, общественных учреждений с высокой проходимостью. Тогда такие механические приспособления актуальны.
Технические параметры
Работа генератора определяется зависимостью между основными величинами, которые являются его главными характеристиками:
- отношения между величинами на холостом ходу;
- внешние параметры;
- регулировочные значения.
Внешняя характеристика генератора постоянного тока крайне важна, так как раскрывает взаимосвязь напряжения и нагрузки. Она отображена на графике. Согласно последнего наблюдается незначительное уменьшение напряжения, но оно почти не зависит от нагрузочного тока (если сохраняется скорость оборотов двигателя).
Внешняя характеристика ГПТ
В устройствах с параллельным возбуждением больше выражено влияние нагрузки на напряжение. Это объясняется уменьшением тока в обмотках. Чем выше ток нагрузки, тем быстрее будет уменьшаться напряжение на зажимах агрегата.
Свойства ГПТ с параллельным возбуждением
Если увеличить величину тока при последовательном возбуждении, то вырастет ЭДС. Но напряжение не достигнет высокого значения электродвижущей силы, так как часть энергии уйдет на потери от вихревых токов.
Свойства ГПТ с последовательным возбуждением
При достижении напряжением максимального значения и одновременным увеличением нагрузки, первое начинает стремительно снижаться в то время, как кривая электродвижущей силы продолжает подниматься. Это считается большим недостатком, ограничивающим использование генератора такого типа.
В устройствах со смешанным возбуждением предвиденные встречные подключения обеих катушек. Конечная сила при однонаправленном подключении равняется сумме векторов намагничивающих сил, при встречном — их разнице.
Вам это будет интересно Электросчетчик Меркурий 201
При равномерном увеличении нагрузки напряжение на зажимах почти не меняется. Оно будет расти лишь тогда, если число проводов последовательной обмотки превышает число витков, которое соответствует номинальному возбуждению якоря.
Свойства ГПТ со смешанным возбуждением
Генераторы со встречным включением применяются в том случае, если нужно ограничить токи короткого замыкания. К примеру, при подсоединении аппаратов для сварки.
КПД
Важной характеристикой генератора считается его КПД — соотношение полезной и полной мощности: η = P 2 / P1. При холостом ходе такое отношение равно нулю (η=0)
При номинальных нагрузках КПД достигнет максимального значения. Мощные агрегаты имеют коэффициент полезного действия около 90 %.
КПД
ЭДС
Электродвижущая сила (ее значение) пропорциональна магнитному потоку, числу проводников (активных) в обмотках, частоте вращения якоря. Если менять последние параметры, то можно легко управлять значением ЭДС. Последнее относится и к напряжению. Нужный результат достигается методом изменения частоты вращения якоря.
Мощность
Выделяют полезную и полную мощности устройства. При постоянной электродвижущей силе полная мощность находится в прямо пропорциональной зависимости от тока: P=EIa. Полезная, которая отдается в цепь, Р1=UI.
Реакция якоря
Если к альтернатору подключить внешнюю нагрузку, то электротоки его обмотки создадут магнитное поле. Тогда возникнет сопротивление полей якоря и статора. Поле будет самым сильным в тех местах, где ротор приближается к магнитным полюсам, очень слабым — в точках максимального удаления. Ротор чувствует магнитное насыщение стальных катушечных сердечников. Сила реакции напрямую зависит от насыщенности в проводах. В результате на пластинках коллекторов будет происходить искрение щеток.
Реакция ротора
Уменьшение реакции достигается при использовании восполняющих магнитных полюсов или передвижением щеток с линии оси.
Устройство простейшего генератора
Простейший генератор представляет собой обыкновенную прямоугольную рамку, которая размещена между магнитами с разными полюсами. Для снятия напряжения с вращающейся рамки используют токосъемные кольца.
В автомобилестроение используют электромагниты – катушки индуктивности или обмотки медного провода. При прохождении электрического тока через обмотку, последняя насыщается электромагнитными свойствами. Для возбуждения обмотки используется аккумуляторная батарея.
Устройство автомобильного генератора переменного тока
Автомобильный генератор состоит из корпуса с крышками, в которых имеются отверстия для вентиляции. Ротор устанавливается в подшипниках 2 и вращается в них. Привод ротора осуществляется путем ременной передачи (ремень одевается на шкив). Ротор выступает электромагнитом (обмоткой). Ток на обмотку поступает с помощью двух медных колец и графитных щеток, которые соединены с электронным регулятором. Электронный реле регулятор отвечает за напряжение на выходе, которое должно находиться в пределах 12 Вольт вне зависимости от частоты вращения шкива привода генератора. Реле регулятор может встраиваться в корпус, а может находиться отдельно.
Статор – представляет собой три медные обмотки, которые соединяются в треугольник. К точкам соединения обмоток подключается выпрямительный мост, который состоит из 6 полупроводниковых диодов, которые служат для преобразования переменного напряжения в постоянное.
Генера́тор (с латыни generator означает «производитель») — устройство, что вырабатывает электроэнергию, производит продукты или преобразует один вид энергии в другой.
Автомобильный генератор — устройство, которое преобразует механическую энергию вращения коленчатого вала двигателя автомобиля в электрическую.
Автомобильный генератор применяется для питания потребителей электроэнергии, таких как система зажигания, приборы освещения, бортовой компьютер автомобиля, системы диагностики, а также для зарядки аккумуляторной батареи (АКБ).
От надежности работы генератора зависит бесперебойность работы остальных систем автомобиля и других его компонентов. Мощность современного автомобильного генератора составляет 1 кВт.
Принцип работы автомобильного генератора
Первые автомобильные генераторы были генераторы постоянного тока. Они требовали много внимания к себе, что обуславливалось частым обслуживанием и контролем работы устройства.
Затем был придуманы диодные выпрямители, что значительно увеличило ресурс работы генератора и увеличило срок его работы. Генераторы с диодными выпрямителями тока стали называться генераторами переменного тока. На производство генератора переменного тока уходило меньше материалов, соответственно он стал легче и значительно меньше, а КПД вырос, обеспечивая более стабильный ток на выходе.
В современных иномарках используют синхронные трехфазные генераторы переменного тока, а в качестве выпрямителя – трехфазный выпрямитель Ларионова.
От поворота ключа до выдачи напряжения…
Во время поворота ключа замка зажигания в рабочее положение питание подается на обмотку возбуждения и генератор начинает отдавать ток в нагрузку. За управление током в обмотке возбуждения отвечает стабилизатор напряжения, который входит в щеточный узел генератора. Питание стабилизатора напряжения осуществляется от выпрямителя.
Ротор генератора приводится во вращение от коленчатого вала через шкив посредством клинового ремня. В обмотке возбуждения создается электромагнитное поле, которое индуцирует электрический ток в фазовых обмотках статора.
Выдаваемый ток – скачкообразный и зависит от частоты вращения коленчатого вала двигателя, поэтому для его стабилизации применяется стабилизатор напряжения.
Напряжение бортовой сети в работающей системе должно находится в пределах 13,8-14,2 В, что обеспечит нормальную подзарядку АКБ.
На крупногабаритных автомобилях используются автомобильные генераторы повышенной мощности 24 В.
Три фактора, влияющие на качество эксплуатации электрогенераторов
На что нужно обратить внимание при выборе электрогенератора? Это три основные вещи – мощность, вид нагрузки и вид используемого топлива. 1. Мощность электрогенератора
Чтобы правильно подобрать этот параметр генератора, нужно рассчитать суммарную мощность, потребляемую всеми электроприборами вашего дома. Нужно взять во внимание то, что нагрузка от потребителей бывает двух видов: это активная (лампочка, бытовые электроприборы, не имеющие электродвигателей) и реактивная (холодильник, кондиционер, насос, сварочный аппарат, болгарки, дрели, в общем, все потребители, имеющие электрические двигатели или высокий пусковой ток)
Мощность электрогенератора. Чтобы правильно подобрать этот параметр генератора, нужно рассчитать суммарную мощность, потребляемую всеми электроприборами вашего дома
Нужно взять во внимание то, что нагрузка от потребителей бывает двух видов: это активная (лампочка, бытовые электроприборы, не имеющие электродвигателей) и реактивная (холодильник, кондиционер, насос, сварочный аппарат, болгарки, дрели, в общем, все потребители, имеющие электрические двигатели или высокий пусковой ток)
1. Мощность электрогенератора. Чтобы правильно подобрать этот параметр генератора, нужно рассчитать суммарную мощность, потребляемую всеми электроприборами вашего дома
Нужно взять во внимание то, что нагрузка от потребителей бывает двух видов: это активная (лампочка, бытовые электроприборы, не имеющие электродвигателей) и реактивная (холодильник, кондиционер, насос, сварочный аппарат, болгарки, дрели, в общем, все потребители, имеющие электрические двигатели или высокий пусковой ток)
Чтобы рассчитать полную мощность потребителей, нужно подсчитать суммарную мощность с учетом всех коэффициентов и небольшого запаса. Примерно это выглядит так.
Рполная = Р1xК1+Р2xК2+ … +РnxКn.
Где K – коэффициент, учитывающий пусковую мощность потребителя.
Коэффициент активной нагрузки для бытовых электроприборов составляет 1-1,3. Для электрических потребителей с реактивной составляющей этот коэффициент условно принимается равным 3.
Электрогенератор газовый бытовой фото
Сумма всех вместе взятых нагрузок и будет определять мощность необходимой вам электростанции, плюс 15% нужно заложить «про запас», поскольку со временем количество электрооборудования имеет свойство увеличиваться. Многие потребители (приборы, в цепь которых включены асинхронные электродвигатели, например, холодильники, электроинструменты) при пуске могут потреблять намного больше электроэнергии, чем указанная в паспортных данных мощность. Если речь идет о дизельной электростанции с заведомо большим запасом мощности, помните, что минимально допустимая нагрузка не может быть меньше 30% мощности электрического генератора.
Бытовой электрогенератор фото
2. Вид нагрузки на электрогенератор. Всем нам известно, что напряжение в сети может быть 220В (230В) и 380В (400В). Бытует мнение, что трехфазные (380В) бытовые электрогенераторы предпочтительнее в виду своей универсальности. Они могут выдавать в сеть как 380В, так и 230В. Но если в ваши планы не входит подключение трехфазных потребителей, то лучше остановиться на однофазной (230В) электростанции.
Электростанция мощностью 6кВт/400В выдает на каждую фазу по 2 кВт, этого может оказаться мало для работы вашего оборудования. В таком случае придется учесть данный нюанс при монтаже электропроводки (часть потребителей посадить на одну фазу, еще часть на другую).
Как выбрать электрогенератор для дома или дачи
3. Используемое топливо. Что выбрать? Дизельную электростанцию или бензогенератор? Бытует мнение, что при потребляемой мощности более 6-8кВт лучше остановиться на дизельном агрегате. Если провести сравнительный анализ бензиновых и дизельных установок одного класса, то можно прийти к выводу, что их надежность практически одинакова. Существенная разница заключается только в их стоимости и стоимости энергоносителя.
С этой точки зрения наиболее выгодными будут газовые электрогенераторы. А если разобраться еще подробнее, то бестопливная энергетика окажется куда более привлекательной. Тут уж выбор за вами. В любом случае, генератор электрического тока, выбранный для использования в конкретных условиях, окажется полезным приобретением.
Автор статьи Александр Куликов
Схема зарядки ВАЗ с инжекторными двигателями
Такая схема идентичная схемам на других моделях ВАЗов. Она отличается от предыдущих, способом возбуждения и контроля на исправность генератора. Он может быть осуществлен при помощи специальной контрольной лампы и вольтметра на панели приборов. Также через лампу заряда происходит первоначальное возбуждение генератора в момент начала работы. Во время работы генератор работает “анонимно”, то есть возбуждение идет напрямую с 30-го вывода.Когда включается зажигание, то питание через предохранитель №10 идет на лампу зарядки в панели приборов. Далее через монтажный блок поступает на 61-й вывод. Три дополнительные диода обеспечивают питание регулятору напряжения, а он в свою очередь передает его на обмотку возбуждения генератора. В этом случае контрольная лампа будет гореть. Именно в тот момент, когда генератор будет работать на обкладках выпрямительного моста напряжение будет гораздо выше, чем у аккумуляторной батареи. В этом случае контрольная лампа не будет гореть, потому что напряжение с ее стороны на дополнительных диодах будет ниже, чем со стороны статорной обмотки и диоды закроются. Если во время работы генератора контрольная лампа горит в пол накала, то это может означать, что пробиты дополнительные диоды.
Устройство генератора
Практически все они похожи по своему устройству, но есть некоторые отличия — это способ приведения механической части в движение (рисунок 1).
Он состоит из основных узлов:
- корпус;
- статор;
- ротор, или якорь;
- коробка коммутации.
Ещё один важный элемент — обгонная муфта генератора. Об особенностях её работы и ремонта читайте в материале нашего эксперта.
Рисунок 1. Генератор в разрезе
Корпус, выполняющий функцию рамы, служит для крепления всех основных частей. Кроме того, в нём устанавливаются подшипники, необходимые для плавного вращения вала и увеличения срока службы устройства. Корпус изготавливают из прочного металла, а также он служит для защиты внутренних частей машины от внешних повреждений.
Статор имеет магнитные полюса, представленные в виде закреплённой обмотки для возбуждения магнитного потока Ф. Выполняется из спецстали, которая называется ферромагнитной. Ротор является подвижной частью, причем его приводит в движение какая-либо сила. В результате на якоре (роторе) образуется разность потенциалов или напряжение (U). Узел (коробка) коммутации, необходим для отведения электричества от ротора. Он состоит из проводящих колец, соединённых с графитовыми токосъёмными контактами.
Виды и варианты исполнения
Дизельные электростанции различаются по выходной электрической мощности, виду тока (переменный трёхфазный/однофазный, постоянный), выходному напряжению, а также частоте тока (например, 50, 60, 400 Гц).
Также дизельные электростанции разделяют по типу охлаждения дизельного двигателя, воздушному или жидкостному. Электростанции с дизельным двигателем жидкостного охлаждения — это агрегаты больших мощностей и размеров.
По назначению
- Портативные (бытовые, переносные) — электростанции с дизельным двигателем воздушного охлаждения мощностью от 0,3 кВт до 20 кВт.
- Стационарные (промышленные) — электростанции с дизельным двигателем жидкостного охлаждения. Как правило, выходной ток — трехфазный, напряжением от 400/230В до 10 кВ. Единичная мощность установок составляет от 8 кВт (10 кВА) до 2000 кВт (2400 кВА).
По конструктивному исполнению
- Открытого исполнения — базовое исполнение электростанции, предназначено для размещения электроустановки в специально оборудованном помещении.
- В шумозащитном кожухе — для установки в помещение при наличии требований к снижению шума.
- Во всепогодном шумозащитном кожухе — для установки на улице при наличии требований к снижению шума.
- Контейнерные — монтаж электростанции в блок-контейнер осуществляется для эксплуатации установки в тяжелых климатических условиях и повышенной вандалозащищённости.
- Электростанция может быть установлена в фургон, машину или на шасси. Таким образом, она приобретает статус мобильной электростанции.
По роду тока
Маломощные дизельные электростанции вырабатывают, как правило, однофазный переменный ток напряжением 220 В и/или трёхфазный напряжением 380 В.
Трёхфазные электростанции имеют более высокий КПД за счёт более высокого КПД генератора переменного тока.
Переносные дизельные электростанции с встроенным выпрямителем (инвертором) могут иметь дополнительный выход постоянного тока напряжением 12-14 вольт, например, для зарядки аккумуляторов.
Мощные дизельные электростанции вырабатывают трёхфазный ток:
- низковольтные — с напряжением до 1 кВ;
- высоковольтные — с напряжением более 1 кВ (6,3 кВ, 10 кВ).
Если необходимо передавать электроэнергию, выработанную низковольтными электростанциями, на значительные расстояние по линиям электропередачи, напряжение повышается на электрических подстанциях до 6,3 кВ или 10,5 кВ.
По типу генератора переменного тока
Синхронный генератор переменного тока Так как частота переменного тока синхронного генератора определяется числом оборотов ротора (двигателя), то дизельная электростанция должна иметь механизм, обеспечивающий постоянное число оборотов дизельного двигателя независимо от нагрузки (генерируемой электрической мощности). Частота переменного тока синхронного генератора будет: f = n 60 {\displaystyle f={\frac {n}{60}}} , где f {\displaystyle f} — частота в герцах; n {\displaystyle n} — число оборотов ротора в минуту.
Если генератор имеет число пар полюсов p {\displaystyle p} , то соответственно этому частота электродвижущей силы такого генератора будет в p {\displaystyle p} раз больше частоты электродвижущей силы двухполюсного генератора: f = p n 60 {\displaystyle f=p{\frac {n}{60}}} .
ЭДС синхронного генератора регулируется изменением тока возбуждения.
Асинхронный генератор переменного тока
Асинхронный генератор может генерировать переменный ток произвольной, нестандартной частоты (значительно отличающейся, например, от используемой в промышленности и быту частоты 50 Гц). Переменный ток после выхода из генератора подвергается выпрямлению, затем получившийся постоянный ток инвертор преобразует в переменный ток с параметрами, определяемыми стандартом. Следует отметить, что недорогие модели инверторов имеют на выходе переменный ток несинусоидальной формы, обычно прямоугольные импульсы или модифицированная синусоида.
ЭДС асинхронного генератора регулируется изменением числа оборотов двигателя и изменением тока возбуждения (если предусмотрено конструкцией генератора).
Асинхронные генераторы без встроенной системы «стартового усиления» плохо переносят длительные перегрузки, в отличие от синхронных.
Сварочные агрегаты
Особой разновидностью дизельных и бензиновых электростанций следует считать сварочные агрегаты, генерирующие постоянный или переменный ток для электродуговой сварки. Выходное электрическое напряжение относительно низкое (около 90 вольт), однако сила тока велика, электрические генераторы не боятся коротких замыканий.